
Editor’s introduction

From a purely algebraic point of view, there is not a lot one can say about infinite
groups in general. Traditionally, these have been studied to good effect in com-
bination with topology or geometry. These lectures represent an introduction to
some recent developments that arise out of looking at infinite groups from a point
of view inspired – in a general sense – by number theory; specifically the interac-
tion between ‘local’ and ‘global’, where by ‘local’ properties of a group G, in this
context, one means the properties of its finite quotients, or equivalently prop-
erties of its profinite completion Ĝ. The second chapter directly addresses the
interplay between certain finitely generated groups and their finite images. The
other two chapters are more specifically ‘local’ in emphasis: Chapter I concerns
the algebraic structure of certain pro-p groups, while Chapter III introduces a
way of studying the rich arithmetical data encoded in certain infinite groups
and related structures.

A motivating example for all of the above is the question of ‘subgroup
growth’. Say G has sn(G) subgroups of index at most n for each n; the func-
tion n �→ sn(G) is the subgroup growth function of G, and is finite-valued if
we assume that G is finitely generated. Now we can ask (inspired perhaps by
Gromov’s celebrated polynomial growth theorem): what does it mean for the
global structure of a finitely generated group if its subgroup growth function
is (bounded by a) polynomial? To approach a question of this kind, we need
to show that if G is in some sense very big, or very complicated, then G must
have a lot of finite quotients that can be more or less well understood. If G is a
finitely generated linear group, there is a natural family of such quotients pro-
vided by the congruence subgroups. The theory of ‘strong approximation’ gives
remarkably good information about these; this is the topic of Chapter II.

The point of ‘local–global’ results in number theory is that the ‘local’ situ-
ation is usually easier to understand. In group theory, we can similarly make
things easier by restricting attention to p-groups: there is only one finite simple
p-group! To an infinite group G we can associate its pro-p completion Ĝp, which
is the inverse limit of the finite p-group quotients of G. If these finite p-quotients
are suitably ‘small’ (for example, if G has polynomial subgroup growth), then –
wonderfully! – Ĝp turns out to have the structure of a (p-adic) Lie group. This
has manifold consequences; in particular, Ĝp is a linear group. Thus the natu-
ral map from G into Ĝp provides a linear representation of G, and the whole
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2 Editor’s introduction

technology of linear groups (including the methods of Chapter II) can be applied.
Of course, p-adic Lie groups arise in many other situations. Chapter I presents
an elementary introduction to the topic, from a group-theoretic perspective.

Given a group G, we can also study the arithmetic of the sequence (sn(G)), or
of other sequences associated to G in a similar spirit (such as the representation
growth function). If G is not ‘too big’ – finitely generated and nilpotent, say, or
arithmetic, or p-adic analytic – these sequences have amazing properties. This is
the topic of Chapter III, which introduces the zeta functions attached to certain
groups and rings. This is a subject still in its infancy: while many striking results
have been obtained, many tantalising questions remain.

The three chapters can be read independently of one another, though there
are occasional cross-references; for a quick introduction to p-adic numbers and
profinite groups see Sections 2–5 of Chapter I. Each chapter has its own intro-
duction; the following remarks are more by way of general motivation.

Analytic pro-p groups

If we want to study the finite images of a group like SLn(Z) from a ‘local’ point
of view, we may focus on those of the form SLn(Z/pmZ) for a fixed prime p.
The inverse limit of this system is the group SLn(Zp) (where Zp is the ring
of p-adic integers). This is the prototype of a (compact) p-adic analytic group.
As one would hope, its structure is more transparent than that of the original
arithmetic group SLn(Z). In particular, it has an open (finite-index) normal
subgroup which is a pro-p group of finite rank. In general, one obtains such a
pro-p group as an inverse limit of finite p-groups of uniformly bounded ranks;
Chapter I presents some of the rich structural theory that exists for these groups.
This material belongs in every group-theorist’s toolbox.

The chapter introduces the concept of pro-p groups, as inverse limits of
finite p-groups. It then develops in more detail the theory of pro-p groups of
finite rank – in this context, the rank of a group G can be defined as the largest
dimension (over Fp) of an elementary abelian section of G. If this is finite, it turns
out that G (or at least a suitable subgroup of finite index) carries the structure
of a Lie algebra over the p-adic integers Zp, of the same (finite) dimension. Thus
certain questions about the non-commutative group G can be approached with
the help of linear methods.

One consequence is that a pro-p group G of finite rank has the structure
of an analytic group over Qp. The more analytic aspects of the theory are not
explored in depth in this chapter; a fuller account may be found in the book
[APG]. Here it is pointed out that a p-adic analytic pro-p group is the same
thing as a closed (in the p-adic topology) subgroup of GLn(Zp), for some n, a
fact that has useful applications as mentioned above.

The Lie theory is applied to good effect in studying the finite representations
of these groups; the Kirillov orbit method relates these to the adjoint action
of the group on its Lie algebra, and leads to remarkable results concerning the
‘representation growth’ functions. These in turn can be applied, in a local–global
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Editor’s introduction 3

spirit, to the representation growth of arithmetic groups: a topic touched on in
Chapters I and III, and the subject of much ongoing research.

Chapter I has some overlap with the book [APG], to which it may serve as
an introduction; it also pursues in some depth topics not covered by that book –
these include saturable pro-p groups, potent filtrations, and the Kirillov orbit
method.

Strong approximation

If one wants to study linear groups, one needs to have some basic familiarity
with the theory of linear algebraic groups. One purpose of Chapter II is to
provide a brief overview of some of the essential features of this theory – at
least enough so that the newcomer can make sense of, and appreciate the value
of, the ‘strong approximation’ results that form the main focus.

In algebraic number theory, the Strong Approximation Theorem is a slightly
beefed-up version of the Chinese Remainder Theorem, which says that if a1, . . . , as

are (finitely many) pairwise coprime ideals in a ring of algebraic integers o, then
the natural map from o into o/a1×· · ·×o/as is surjective. A much deeper fact is
that an analogous statement is true for certain non-commutative matrix groups
(arithmetic groups). The general setup is explained in Chapter II; as a typical
example, we have: if q1, . . . , qs are pairwise coprime integers, then the natural
map π : SLn(Z) → SLn(Z/q1Z) × · · · × SLn(Z/qsZ) is surjective.

This theory is satisfying, and in a sense not surprising (SLn(Z) is generated
by elementary subgroups that look like Z, to which the Chinese Remainder The-
orem may be applied; the proof for other arithmetic groups is much harder). A
truly remarkable generalisation was discovered in the 1980s by Madhav Nori and
Boris Weisfeiler. This applies to linear groups that may be far from arithmetic;
for example, if Γ is any Zariski-dense subgroup of SLn(Z), then the restriction
of π to Γ is still surjective, as long as q1, . . . , qs avoid some finite set of possibly
bad primes. In general, the theorem applies to any linear group Γ (over a ring
Z[1/m] for some m) such that the Zariski-closure G of Γ is simple as an algebraic
group over Q: it ensures that Γ has an infinite family of readily identifiable finite
images, namely the groups G(Z/qZ) for many integers q.

The necessary technical language (algebraic groups, Zariski topology) is all
explained in this chapter, which goes on to describe some powerful and straight-
forward applications to finitely generated linear groups in general. These are
encapsulated in the so-called ‘Lubotzky alternative’, which implies the follow-
ing: if Γ is a finitely generated linear group over a field of characteristic 0, then
either Γ is virtually soluble or Γ has a subgroup ∆ of finite index such that ∆
has infinitely many finite quotients of the form G(Fpe), simple groups of a fixed
Lie type over finite fields, with p ranging over almost all primes and e bounded.

The Lubotzky alternative is a key tool for attacking questions of the follow-
ing kind (and was indeed motivated by them): what global constraints follow
for a finitely generated group G if the finite images of G are in some sense
‘small’, or in some sense ‘grow slowly’? Such investigations are expounded in
Chapters 5 and 12 of the book [SG]; results include the characterisation of
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4 Editor’s introduction

finitely generated residually finite groups of finite upper rank, or with polyno-
mial subgroup growth, as those which are virtually soluble of finite rank. The
point in each case is that if G is not virtually soluble, then G must have finite
images that are ‘too big’, or grow too fast.

This methodology has been used in a number of other ways (see Chapter II,
Section 6.4). It also belongs in the toolbox of anyone seriously studying finitely
generated residually finite groups.

Zeta functions

To each finitely generated group G we may associate the numerical sequence
(an) where an = an(G) is the number of subgroups of index (exactly) n in G.
It is traditional in number theory to represent such a sequence by a ‘generating
function’. If the an grow at most polynomially with n (i.e. if G has polynomial
subgroup growth), it may be a good idea to take for this the Dirichlet series

ζG(s) =
∞∑

n=1

ann−s.

This is a priori a formal expression in which s is an indeterminate, but the
polynomial growth condition implies (and is equivalent to) the fact that ζG(s)
converges if s is a complex number lying in some non-empty right half-plane,
and defines there an analytic function of s. A familiar example is where G is
the infinite cyclic group, in which case ζG is the Riemann zeta function ζ(s). Of
course, the sequence – an = 1 for all n – encoded by ζ(s) does not in itself seem
very challenging. However, if instead of Z we consider the ring of integers o in
an algebraic number field k and let an denote the number of ideals of index (i.e.
norm) n in o, the resulting Dirichlet series is then the Dedekind zeta function
ζk; over a century of algebraic and analytic number theory has shown how the
analysis of ζk reveals deep properties of the number field k.

The number-theoretic zeta functions have many excellent properties, such
as an Euler product, analytic continuation, functional equations. It would be
too much to expect all of these to obtain if we start from an essentially non-
commutative object like a finitely generated (non-abelian) group. However, for
certain kinds of group the associated zeta functions turn out to have some
remarkable properties: for example, if G is nilpotent then ζG does have an
Euler product. This is not so surprising; more remarkably, the ‘local factor’ at
a prime p is a rational function in the parameter p−s (recall that the p-local
factor of the Riemann zeta function is 1/(1 − p−s)). We can then seek more
detailed information about these rational functions: are they all the same (as
in Riemann’s case)? What other properties do they have? It turns out that the
Dedekind zeta functions are not quite an adequate model: more relevant are the
Hasse–Weil zeta functions associated to algebraic varieties.

Various zeta functions of this general nature can be associated to various
kinds of groups and rings. Chapter III introduces some of these, and presents
methods used for analysing them. The non-commutative nature of the input
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Editor’s introduction 5

means that, in all but the simplest cases, the explicit calculation of the functions
is very hard. Many remarkable results have nonetheless been achieved. Among
the most remarkable is the widespread occurrence of so-called ‘local functional
equations’. This was quite unexpected, remaining for a long time no more than
a collection of experimental observations. It reveals deep hidden arithmetical
symmetries in apparently innocuous algebraic structures (partly related to –
though not a simple consequence of – the Weil conjectures).

Chapter III is perhaps the most technically demanding part of the book: it
serves as an introduction to a rich field of research that is only beginning to
reveal its mysteries. Less technical – and less up-to-date – discussions of these
topics can be found in Chapter 9 of [NH] and Chapters 15 and 16 of [SG].

References for Chapter

[APG] J.D. Dixon, M.P. F. du Sautoy, A. Mann and D. Segal, Analytic
pro-p groups, 2nd edn, Cambridge University Press, 1999.

[NH] M. P. F. du Sautoy, D. Segal and A. Shalev (eds.), New horizons in
pro-p groups, Birkhäuser, Boston MA, 2000.

[SG] A. Lubotzky and D. Segal, Subgroup growth, Birkhäuser, Basel,
2003.
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Chapter I

An introduction to compact
p-adic Lie groups
by Benjamin Klopsch

1 Introduction

The theory of Lie groups is highly developed and of relevance in many parts
of contemporary mathematics and theoretical physics. Loosely speaking, a Lie
group is a group with the additional structure of a real differentiable manifold,
given by local coordinate systems, such that the group operations are smooth
functions.

Historically, the study of Lie groups, over the real and complex numbers,
arose toward the end of the 19th century, from the analysis of continuous sym-
metries of differential equations by the mathematician Sophus Lie and others.
Around the middle of the 20th century, mathematicians such as Armand Borel
and Claude Chevalley found that many of the foundational results concerning
Lie groups could be developed completely algebraically, giving rise to the theory
of algebraic groups defined over arbitrary fields. This insight opened the way for
entirely new directions of investigation. Much of the theory of p-adic Lie groups
was developed in the 1960s by mathematicians such as Nicolas Bourbaki, Michel
Lazard and Jean-Pierre Serre. Since then the study of p-adic Lie groups and ana-
logues of Lie groups over adele rings has largely been motivated by questions
from number theory, e.g. regarding automorphic forms and Galois representa-
tions. More recently, p-adic Lie groups have also become a key tool in infinite
group theory.

Throughout, let p be a prime. The real numbers R form a completion of
the rational numbers Q. Similarly, the field of p-adic numbers Qp is obtained
by completing Q, albeit with respect to a different, non-archimedean notion of
distance. One can define analytic functions over Qp and p-adic manifolds, just
as over R. A p-adic Lie group, or p-adic analytic group, is a Lie group whose
local coordinate systems are p-adic valued rather than real valued. Given such
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8 Chapter I. Compact p-adic Lie groups

a group, the usual apparatus of Lie theory is available; but one needs to keep
in mind that the underlying geometry is rather different, i.e. non-archimedean.

Based on [6, Historical Note, VII], we give some indication of the early
history of p-adic Lie theory. The first p-adic Lie groups were encountered by
Kurt Hensel at the beginning of the 20th century. He was interested in the
local isomorphisms between the additive and the multiplicative groups of Qp,
via the exponential and logarithm maps. More general commutative p-adic Lie
groups appeared in the works of André Weil and Élisabeth Lutz on elliptic
curves in the 1930s. Subsequent investigations of abelian varieties by Claude
Chabauty suggested that the local theory of Lie groups could be applied with
little change to the p-adic setting. In 1942, this was made explicit by Robert
Hooke, a student of Chevalley; see [19]. Until the beginning of the 1960s, p-adic
Lie theory continued to be of interest mainly to arithmeticians and algebraic
geometers.

The crucial turning point came in 1962, when Jean-Pierre Serre was prompted
by a question of John Tate to consider the cohomology of a closed subgroup of
the p-adic Lie group GL2(Zp). His work led him to propose to Michel Lazard
a general programme of comparing the cohomology of p-adic Lie groups to the
cohomology of associated Lie algebras.1 In addition to his cohomological results,
Lazard’s great achievement in [39] was to show that the class of p-adic Lie groups
admits a fairly straightforward group-theoretic characterisation, thereby solving
the p-adic analogue of Hilbert’s fifth problem.

The upshot of Lazard’s characterisation and its later interpretation in terms
of powerful groups and groups of finite rank, as described in [10], is that one can
study and utilise compact p-adic Lie groups without ever imposing any analytic
machinery. Instead, one can construct internally, by group-theoretic means, the
key features and invariants of such groups, e.g. their dimensions as Lie groups.
This truly algebraic nature of p-adic Lie groups explains to a certain degree
their continuing relevance and usefulness in infinite group theory throughout
the last three decades; e.g. see [10] and the references given therein.

It is very natural to ask to what extent this success story also translates
to groups which are analytic over local fields of positive characteristic or, more
generally, pro-p domains of higher Krull dimension. Here our understanding is
still much less complete; cf. [10, Ch. 13] and [25].

Aims and scope

The aim of the present notes is to provide an accessible introduction to compact
p-adic Lie groups from a group-theoretic point of view. We also discuss the
relation between p-adic analytic pro-p groups, other classes of profinite groups
and abstract groups. The text is based on a series of five lectures delivered during
a short course for graduate students at the University of Oxford in 2007. I have
tried to preserve the basic structure and informal style of the original lectures,
while adding slightly more detail and appropriate references in places. The series

1We are grateful to Prof. Serre for providing this historical information.
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1. Introduction 9

of exercises which I include are essentially the ones given during the course, and
one of their key purposes is to explore topics which branch off from the main
thread of narration. Readers of these notes who are subsequently interested
in a more detailed account of the theory of p-adic analytic pro-p groups will
naturally turn to the book [10], by Dixon, du Sautoy, Mann and Segal, and the
other books listed as main references below.

Content and organisation

The notes are organised as follows.
Section 2 provides a short account of prerequisites from group theory, algebra

and number theory. The main topics discussed are: nilpotent groups, finite
p-groups, Lie rings, Lie methods in group theory, absolute values, p-adic numbers
and integers. The section ends with a preview of what p-adic analytic groups
are. The short Section 3 provides a summary of basic notions and facts from
point-set topology. Section 4 contains the first series of exercises.

Section 5 introduces powerful finite p-groups and profinite groups (as Galois
groups, inverse limits, profinite completions and topological groups). It goes on
to describe pro-p groups, powerful pro-p groups and pro-p groups of finite rank.
The latter are precisely the pro-p groups which admit the structure of a p-adic
analytic group. The second series of exercises is collected in Section 6.

Section 7 describes uniformly powerful pro-p groups and the powerful Zp-Lie
lattices associated to them. Both directions, the limit process which yields a Lie
lattice from a Lie group and the transition from a Lie lattice to a Lie group via
the Hausdorff formula are explained.

Section 8 starts with a concrete example, the group GLd(Zp) and its princi-
pal congruence subgroups. It then moves on to discuss just-infinite pro-p groups,
saturable pro-p groups and the Lie correspondence between subgroups of sat-
urable pro-p groups and Lie sublattices of the associated Zp-Lie lattice. The
third and last series of exercises is collected in Section 9.

Section 10 provides a taste of current research on complex irreducible repre-
sentations of compact p-adic Lie groups. It introduces the Kirillov orbit method
and illustrates its use in the study of representation zeta functions.

References

The following books, which can be regarded as our main references, cover some
of the selected material in greater detail. They also address many related and
more advanced topics.

J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p
groups, Cambridge University Press, 1999.

E. I. Khukhro, p-automorphisms of finite p-groups, Cambridge University
Press, 1998.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00529-7 - Lectures on Profinite Topics in Group Theory
Benjamin Klopsch, Nikolay Nikolov and Christopher Voll
Excerpt
More information

http://www.cambridge.org/9781107005297
http://www.cambridge.org
http://www.cambridge.org


10 Chapter I. Compact p-adic Lie groups

G. Klaas, C. R. Leedham-Green and W. Plesken, Linear pro-p-groups of
finite width, Springer Verlag, 1997.

C. R. Leedham-Green and S. McKay, The structure of groups of prime
power order, Oxford University Press, 2002.

J. S. Wilson, Profinite groups, Oxford University Press, 1998.

The original source for much of the theory of p-adic analytic groups is Lazard’s
seminal paper ‘Groupes analytiques p-adiques’, Inst. Hautes Études Scientifiques,
Publ. Math. 26, 389–603 (1965).

Throughout the text I have aimed to give reasonably complete, but not
exhaustive references to the literature. A guiding principal for my choices has
been to select economically a mixture of classical and modern references which
are suitable for a newcomer to the subject. More complete references can be
found in the books listed above. Each section of the present notes, except for
the short Section 3, ends with a few selected suggestions for further reading.
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2 From finite p-groups to compact p-adic Lie
groups

In this section, we provide a short account of various basic concepts from group
theory and number theory, and we introduce some key notation. After discussing
finite p-groups, Lie methods and p-adic integers, we state a hands-on version of
Lazard’s characterisation of compact p-adic Lie groups.

A useful, general reference for the group-theoretic notions and facts, appear-
ing in this section, is Robinson’s introductory text [51].

2.1 Nilpotent groups

Let G be a group and let x, y ∈ G. The conjugate of x by y is xy = y−1xy.
Conjugation provides a natural action of G on itself; indeed, it induces a homo-
morphism from G into its automorphism group Aut(G). The kernel of this
homomorphism, which constitutes a normal subgroup of G, is called the centre
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2. From finite p-groups to p-adic Lie groups 11

of G and denoted by Z(G). The upper central series of G is the ascending series
of normal subgroups

1 = Z0(G) ≤ Z1(G) ≤ . . . , where Zi+1(G)/ Zi(G) = Z(G/ Zi(G)).

By and large, we will be interested in filtrations of a group G which start at
the top, such as the lower central series which we describe next. The commutator
of x with y is [x, y] = x−1xy = x−1y−1xy. The subgroup generated by all
commutators is called the commutator subgroup of G and denoted by [G,G].
This notation is easily adapted to a more general situation: if H,K ≤ G, then we
write [H,K] to denote the subgroup of G which is generated by all commutators
[h, k] with h ∈ H and k ∈ K. The group [G,G] can be characterised as the
smallest normal subgroup of G such that the corresponding quotient is abelian.
The lower central series of G is the descending series of normal subgroups

G = γ1(G) ≥ γ2(G) ≥ . . . , where γi+1(G) = [γi(G), G].

A basic property of this sequence is that [γi(G), γj(G)] ⊆ γi+j(G) for all i, j ∈ N.
The group G is said to be nilpotent if its lower central series terminates in

the trivial group 1 after finitely many steps; in this case, the nilpotency class
of G is the smallest non-negative integer c such that γc+1(G) = 1. It can be
shown that for any group G and for any natural number c the lower central
series of G terminates in 1 after c steps if and only if the upper central series of
G terminates in G after c steps; see [51, §5.1.9].

Nilpotent groups can be thought of as close relatives of abelian groups.
Nevertheless, the study of finite nilpotent groups can become exceedingly dif-
ficult from a purely group-theoretic point of view. In fact, a finite group is
nilpotent if and only if for each prime p it has a unique Sylow p-subgroup.
Equivalently, a finite group is nilpotent if and only if it decomposes as a direct
product of finite p-groups; see [51, §5.2.4]. Whereas finite abelian groups are
completely classified, the theory of finite p-groups remains an active area of
research with many open problems.

Of particular interest in finite group theory is the information that can be
gained about a group G from its Sylow p-subgroups – which, as indicated, are
nilpotent – and their normalisers. This direction, called local group theory, played
a critical role in the classification of finite simple groups. For instance, relating
the representation theory of a finite group G to the representation theory of the
normalisers of p-subgroups of G is currently an attractive field of research; a
lot of recent work is focused around the McKay conjecture and generalisations
thereof, e.g. see [46].

2.2 Finite p-groups

A p-group is a torsion group in which every element has p-power order. Accord-
ingly, finite p-groups are precisely the groups of p-power order. We implicitly
stated above that every finite p-group is nilpotent. This fact can easily be proved
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