

Quantum Mechanics and Quantum Field Theory

Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics.

The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics, and quantum field theory. There is also background material on analysis, classical mechanics, relativity, and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.

Jonathan Dimock is Professor of Mathematics, SUNY at Buffalo. He has carried out research in various areas of mathematical physics, including constructive quantum field theory, quantum field theory on manifolds, renormalization group methods, and string theory.

Quantum Mechanics and Quantum Field Theory

A Mathematical Primer

JONATHAN DIMOCK

SUNY at Buffalo

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107005099

© J. Dimock 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Dimock, Jonathan, 1945—
Quantum mechanics and quantum field theory:
a mathematical primer / Jonathan Dimock.
p. cm.
ISBN 978-1-107-00509-9 (hardback)

ISBN 978-1-107-00509-9 (hardback)

1. Quantum theory – Mathematics. I. Title.

QC174.17.M35D56 2011

530.12–dc22

2010041723

ISBN 978-1-107-00509-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

for Benjamin, Christina, Gregory, and Ann

Contents

Pi	reface		page xi
ln	trodu	ction	1
		Part I Non-relativistic	3
1	Mat	hematical prelude	5
	1.1	Bounded operators	5
	1.2	Unbounded operators	11
	1.3	Self-adjoint operators	14
	1.4	Compact operators	22
2	Clas	sical mechanics	28
	2.1	Hamiltonian mechanics	28
	2.2	Examples	29
	2.3	Canonical transformations	31
	2.4	Symmetries	34
3	Qua	ntum mechanics	38
	3.1	Principles of quantum mechanics	38
	3.2	Canonical quantization	41
	3.3	Symmetries	43
	3.4	Perspectives and problems	45
4	Single particle		47
	4.1	Free particle	47
	4.2	Particle in a potential	48
	4.3	Spectrum	51
	4.4	The harmonic oscillator	53

۷ij

viii

Cambridge University Press 978-1-107-00509-9 - Quantum Mechanics and Quantum Field Theory: A Mathematical Primer Jonathan Dimock Frontmatter More information

		Contents	
	4.5	Scattering	55
	4.6	Spin	58
5	Man	6.	
	5.1	Two particles	63
	5.2	Identical particles	66
	5.3	<i>n</i> -particles	6
	5.4	Fock space	70
6	Stat	istical mechanics	78
	6.1	Mixed states	78
	6.2	Equilibrium states	79
	6.3	Free boson gas	83
	6.4	Free fermion gas	80
	6.5	Interacting bosons	88
	6.6	Further developments	90
		Part II Relativistic	93
7	Rela	ntivity	95
	7.1	Principles of relativity	9:
	7.2	Minkowski space	90
	7.3	Classical free fields	103
	7.4	Interacting classical fields	107
	7.5	Fundamental solutions	11:
8	Scalar particles and fields		
	8.1	Scalar particles	114
	8.2	Scalar fields	118
	8.3	Charged scalar field	120
9	Elec	trons and photons	130
	9.1	Spinors	130
	9.2	Electrons	132
	9.3	Dirac fields	139
	9.4	Photons	144
	9.5	Electromagnetic field	148
10	Field	d theory on a manifold	152
	10.1	Lorentzian manifolds	152

ix

Cambridge University Press 978-1-107-00509-9 - Quantum Mechanics and Quantum Field Theory: A Mathematical Primer Jonathan Dimock Frontmatter More information

Contents	
10.2 Classical fields on a manifold	154
10.3 Quantum fields on a manifold	155
10.5 Quantum fields on a manifold	133
Part III Probabilistic methods	159
11 Path integrals	161
11.1 Probability	161
11.2 Gaussian processes	163
11.3 Brownian motion	165
11.4 The Feynman–Kac formula	168
11.5 Oscillator process	169
11.6 Application: ground states	171
12 Fields as random variables	174
12.1 More on Gaussian processes	174
12.2 The Schrödinger representation	181
12.3 Path integrals – free fields	184
12.4 Vacuum correlation functions	187
12.5 Thermal correlation functions	189
13 A nonlinear field theory	192
13.1 The model	192
13.2 Regularization	193
13.3 Infinite volume	197
13.4 Path integrals – interacting fields	201
13.5 A reformulation	204
Appendix A Normed spaces	208
Appendix B Tensor product	211
Appendix C Distributions	215
References	219
Index	222

Preface

This is a book on mathematical physics for a reader with a good background in mathematics, but possibly a minimal knowledge of physics. The subject matter is quantum physics and includes non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics, and quantum field theory. The book only contains material which meets the twin criteria of being basic physics and being treatable with complete mathematical rigor. For each topic there is a straightforward statement of basic principles followed by simple examples. There is also background material in analysis, classical mechanics, relativity, and probability.

The book does not prove deep mathematical theorems. The book does not consider the complicated models of mathematical physics. The book does not enter into the fascinating speculative topics on the frontiers of physics, for example string theory. Finally the book does not consider questions concerning the foundations or philosophy of quantum physics. However the book does help prepare the reader for a journey in any of these directions.

The book assumes knowledge of elementary analysis, measure theory, linear algebra, some group theory, and some knowledge of differential equations. Some reference is made to manifolds, differential geometry, and Lie groups. Not much knowledge of physics is assumed beyond an introductory course. However one probably needs more than this to really appreciate the material.

The book is suitable for a graduate course in mathematics. In this connection there are problems scattered throughout the text. These serve the dual function of further developing the material and providing a study aid. The level of difficulty is quite variable.

Books which cover similar ground are Gustafson and Sigal (2003) and Takhtajan (2008). The mathematical level is about the same, but they have different points of emphasis.