Physical Principles of Remote Sensing Third Edition

Fully updated and with significant new treatments of photography, laser profiling and image processing, the third edition of this popular textbook covers a broad range of remote sensing applications and techniques across the earth, environmental and planetary sciences. It focusses on physical and mathematical principles, giving students a deeper understanding of remote sensing systems and their possibilities, while remaining accessible to those with less mathematical training by providing less technical summaries of quantitative topics.

Key features

- Boxed examples and additional photos engage students and show them how the theory relates to real-world applications.
- Numerous colour images bring the subject to life.
- Section summaries, review questions and additional problems allow students to check their understanding of key concepts and practise handling real data for themselves.
- Review questions link out to supplementary online material, which includes freely available software, practical exercises and animations.

W.G. Rees is a Senior Lecturer at the Scott Polar Research Institute, University of Cambridge, where he has taught and researched in the field of remote sensing for over 20 years. He has been active in developing and applying remote sensing methods to the mapping and monitoring of the polar regions, having conducted fieldwork in arctic regions of Europe and Asia, and in Svalbard. For the past few years he has been joint coordinator of PPS Arctic, a major programme to investigate the characteristics and behaviour of the arctic treeline as part of the International Polar Year, and he is also a member of the ISPRS (International Society for Photogrammetry and Remote Sensing) working group on LiDAR. Dr Rees has published several books on remote sensing, including the first and second editions of *Physical Principles of Remote Sensing* (1990, 2001, Cambridge University Press), *The Remote Sensing Data Book* (1999, Cambridge University Press) and *Remote Sensing of Glaciers* (with P. Pellikka, 2010, Taylor & Francis). He was made a Fellow of the Institute of Physics in 1996 and is a member of the Photogrammetry and Remote Sensing Society.

"This is a welcome new edition of a popular text, with wonderful color illustrations. The author helps students digest the principles by adding useful summaries and review questions. A practical improvement for students and instructors is the addition of the rich suite of online resources, which greatly add to the book's appeal."

Dr. Farouk El-Baz

Director, Center for Remote Sensing, Boston University

"Rees' new edition of his popular remote sensing textbook is written in an easy-to-follow style, but doesn't neglect the mathematical underpinnings. It covers principles related to all the key wavelength regions, and such diverse topics as photogrammetry, atmospheric sounding and multispectral imaging. Including coverage of applications on land, in the atmosphere and oceans, it represents an excellent resource for students and practitioners alike."

Professor Martin Wooster

Environmental Monitoring & Modelling Research Group, Kings College London

"The third edition of this well known, highly respected and authoritative textbook contains a wealth of new material that captures advances in optical and microwave sensor systems and applications. University teachers will be delighted that the format remains the same; theory and technical detail are explained in clear language and supported by excellent diagrams and figures. The book incorporates good pedagogic principles that incorporate summaries for each topic, additional text boxes to help guide students not familiar with certain theoretical concepts, and review questions with problems to assist teachers to set extension exercises. The book uses excellent examples, many of which are new in this edition, that clearly demonstrate why remote sensing data from a very wide range of sensors and platforms has such an impact on science and society today. Every student of remote sensing, whatever their level, and every library should have a copy of this excellent book."

Professor Daniel Donoghue Department of Geography, Durham University

Cambridge University Press 978-1-107-00473-3 - Physical Principles of Remote Sensing: Third Edition W. G. Rees Frontmatter More information

Physical Principles of Remote Sensing

THIRD EDITION

W. G. REES

Scott Polar Research Institute University of Cambridge

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107004733

© W. G. Rees 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 3rd printing 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing-in-Publication data

Rees, W. G. 1959–
Physical principles of remote sensing / W. G. Rees. – 3rd ed. p. cm.
ISBN 978-1-107-00473-3 (Hardback) – ISBN 978-0-521-18116-7 (Paperback)
1. Remote sensing. I. Title.
G70.4.R44 2013
621.36'78–dc23 2012018197

ISBN 978-1-107-00473-3 Hardback ISBN 978-0-521-18116-7 Paperback

Additional resources for this publication at www.cambridge.org/rees Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Christine as always

CONTENTS

	Pref Ack	ace nowledgements	<i>page</i> xv xviii
1	Introduction		1
	1 1	A short history of remote sensing	1
	1.1	Applications of remote sensing	5
	1.3	A systems view of remote sensing	6
	1.4	Further reading, and how to obtain data	9
2	Electromagnetic waves in free space		11
	2.1	Electromagnetic waves	11
	2.2	Polarisation	15
	2.3	Spectra and the Fourier transform	19
	2.4	The Doppler effect	24
	2.5	Describing angular distributions of radiation	25
	2.6	Thermal radiation	28
		2.6.1 Characteristics of solar radiation	34
	2.7 Diffraction		36
	Review questions		40
	Prob	lems	40
3	Inte	eraction of electromagnetic radiation with matter	42
	3.1	Propagation through homogeneous materials	43
		3.1.1 Complex dielectric constants: absorption	44
		3.1.2 Dielectric constants and refractive indices of real materials	45
		3.1.3 Dispersion	49
	3.2	Plane boundaries	52
	3.3	Scattering from rough surfaces	56
		3.3.1 Description of surface scattering	57
		3.3.2 Simple models of surface scattering	59
		3.3.3 The Rayleigh roughness criterion	62
		3.3.4 Models for microwave backscatter	64
	3.4	Absorption and scattering by particles	73
		3.4.1 Very small particles	74
		3.4.2 Larger particles	76
		3.4.3 Absorption and scattering by atoms and molecules	78
	3.5	The radiative transfer equation	84
		3.5.1 Propagation through an absorbing medium	85
		3.5.2 Propagation through an absorbing and emitting medium	86

Cambridge University Press 978-1-107-00473-3 - Physical Principles of Remote Sensing: Third Edition W. G. Rees Frontmatter More information

x

Contents

·				
		3.5.3 A simple model of scattering and absorption: the two-stream		
		approximation	89	
	26	3.5.4 Scattering, absorption and emission	93	
	3.0	2.6.1. Visible and near infrared region	94	
		3.6.2 Emissivities in the thermal infrared region	93	
		3.6.2 Emissivities in the microwave region	100	
		3.6.4 Effect of clouds and snow on microwave radiation	100	
		3.6.5 Microwave backscattering coefficients	102	
		3.6.6 Modelling microwave backscattering: case study of a snowpack	105	
	Review questions Problems		107	
			108	
4	Interaction of electromagnetic radiation with the Earth's			
	atm	nosphere	110	
	4.1	Composition and structure of the gaseous atmosphere	110	
	4.2	Molecular absorption and scattering in the atmosphere	114	
	4.3	Particles in the atmosphere: aerosols	119	
	4.4	Fog and cloud	121	
	4.5	Rain and snow	125	
	4.6	The ionosphere	128	
	4.7 Atmospheric turbulence		131	
	Review questions		133	
	Prob	lems	133	
5	Pho	otographic systems	135	
	5.1	Photographic film	135	
		5.1.1 Performance of photographic film: speed, contrast and spatial resolution	136	
		5.1.2 Digital photography	139	
	5.2	Photographic optics	141	
		5.2.1 Lens distortion	144	
	5.3	Photogrammetry and stereogrammetry	147	
		5.3.1 Relief displacement	149	
		5.3.2 Stereophotography	152	
	5.4	Atmospheric propagation	156	
	5.5	Some instruments	158	
	5.6 Davi	Applications of aerial and space photography	162	
	Revie	ew questions	162	
	Prop	lems	163	
6	Ele	ctro-optical systems	164	
	6.1	Visible and near-infrared imaging systems	164	
		6.1.1 Detectors	164	
		6.1.2 Imaging	167	
		6.1.3 Spatial resolution	170	

xi

Contents

	6.1.4 Spectral resolution	171
	6.1.5 Atmospheric propagation and correction	172
6.2	Types of VNIR imager	175
	6.2.1 Very high resolution imagers	175
	6.2.2 High resolution imagers	176
	6.2.3 Medium resolution imagers	179
	6.2.4 Low resolution imagers	179
	6.2.5 Ocean colour imagers	180
	6.2.6 Hyperspectral imagers	181
	6.2.7 Geostationary imagers	182
6.3	Major applications of VNIR images	184
6.4	Thermal infrared imagers	188
	6.4.1 Detectors	188
	6.4.2 Thermal infrared imaging	189
	6.4.3 Spatial resolution	189
	6.4.4 Spectral resolution and sensitivity	190
	6.4.5 Atmospheric propagation and correction	191
6.5	Types of TIR imager	194
	6.5.1 High resolution TIR imagers	194
	6.5.2 Medium resolution TIR imagers	194
	6.5.3 Geostationary TIR imagers	196
6.6	Major applications of thermal infrared images	197
	6.6.1 Earth surface temperature	198
	6.6.2 Thermal inertia	199
	6.6.3 Cloud detection and monitoring	204
6.7	Atmospheric sounding	206
	6.7.1 Temperature profiling from observations at nadir	207
	6.7.2 Profiling of gas concentrations at nadir	210
	6.7.3 Backscatter observations at nadir	211
	6.7.4 Limb-sounding observations	211
	6.7.5 Spectral resolution for atmospheric sounding observations	213
6.8	Some profiling instruments	216
Revi	ew questions	220
Prob	lems	221
Pag	cive microwave systems	222
7 1		225
/.1	Antenna theory	223
	7.1.2 Sensitivity	223
	7.1.2 Sensitivity	229
7 0	7.1.3 Scanning radiometers	229
1.2	Applications of passive microwave radiometry	232
	7.2.1 Oceanographic applications	232
7 2	1.2.2 Land surface applications	235
1.5	Autospheric correction of passive microwave imagery	239
7.4	Examples: the SSIVIIS and the MISMK	241

7

xii

Contents

	7.5 Atmospheric sounding using passive microwave observations	243
	Review questions	247
	Problems	248
8	Ranging systems	250
Ū	8.1 Laser profiling	250
	8.1.1. Scanning laser profilers	253
	8.1.2 Waveform-resolving laser profiling	255
	8.1.3 Atmospheric correction of laser profiler data	255
	8.1.4 Applications of laser profiling	257
	8.2 Radar altimetry	261
	8.2.1 Simple model of the waveform	261
	8.2.2 Effect of the Earth's curvature	265
	8.2.3 Effect of coherence: range accuracy	266
	8.2.4 Response from a rough surface	267
	8.2.5 Applications of radar altimetry	269
	8.2.6 Atmospheric and ionospheric correction of radar altimeter data	273
	8.2.7 Example: the Envisat RA-2 radar altimeter	275
	8.3 Other ranging systems	277
	Review questions	278
	Problems	278
9	Scattering systems	281
5		201
	9.2 The radar equation	282
	9.3 Microwave scatterometry	285
	9.3.1 Applications of microwave scatterometry	203
	932 Example: ASCAT	207
	9.4 Real-aperture imaging radar	292
	9.4.1 Image distortions	294
	9.4.2 Instruments and applications	296
	9.5 Synthetic aperture radar	297
	9.5.1 More exact treatment of the azimuth resolution	300
	9.5.2 Speckle	301
	9.5.3 Distortions of SAR images	304
	9.5.4 Limitations imposed by ambiguity	306
	9.5.5 SAR interferometry	307
	9.5.6 Major applications of radar imaging	312
	9.5.7 Example: Radarsat-2	314
	Review questions	
	Problems	317
10	Platforms for remote sensing	318
-	10.1 Aircraft	318
	10.2 Satellites	320

xiii

Contents

11

	10.2.1 Launch of satellites	321
10.3.	Description of the satellite orbit	325
	10.3.1 Effects of the Earth's asphericity	329
	10.3.2 Special orbits	331
10.4	Satellite station-keeping and orbital manoeuvres	343
Revie	w questions	346
Proble	ems	346
Data	a processing	348
11 1	Transmission and storage of data	348
11.1	Image processing	351
11.2	11.2.1 Preprocessing	357
	11.2.2 Image enhancement	360
	11.2.2 Band transformations	300
112	Inc. S Band transformations	3/1
11.5	11.2.1 Density sliging and pseudosolour display	300 201
	11.2.2 Multicrostral classification	201 201
	11.2.2 Humanna stud classification	301 295
	11.3.5 Hyperspectral classification methods	202 202
	11.2.5. Sub rivel elegification	200
	11.5.5 Sub-pixel classification	200
	11.2.7 Error matrices and classification accuracy	200
11 /	II.5.7 Error matrices and classification accuracy	390 204
11.4	11.4.1. Segmentation	394 204
	11.4.1 Segmentation	394 205
115	11.4.2 Detecting snapes	595 402
11.5	Geographic information systems	402
11.0	Image formats and data compression	404
	11.6.1 Image compression	404
Devile	11.6.2 Image formats for remote sensing	406
Revie	w questions	409
Prople	ems	410
App	endix: Data tables	412
A.1	Physical constants	412
A.2	Units	412
A 3	Illuminance at the Earth's surface	413
A 4 1	ΔA Properties of the Sun and Earth	
A.5	Position of the Sun	414
References		
Index		
-		

See colour plates section between pages 206 and 207.

PREFACE

There are many books that explain the subject of remote sensing to those whose backgrounds are primarily in the environmental sciences. This is an entirely reasonable fact, since they continue to be the main users of remotely sensed data. However, as the subject grows in importance, the need for a significant number of people to understand not only what remote sensing systems do, but how they work, will grow with it. This was already happening in 1990, when the first edition of *Physical Principles of Remote Sensing* appeared, and since then increasing numbers of physical scientists, engineers and mathematicians have moved into the field of environmental remote sensing. It is mainly for such readers that this book, like its previous editions, has been written. That is to say, the reader for whom I have imagined myself to be writing is educated to a reasonable standard (although not necessarily to first degree level) in physics, with a commensurate mathematical background. I have however found it impossible to be strictly consistent about this, because of the wide range of disciplines within and beyond physics from which the material has been drawn, and I trust that readers will be understanding when they find the treatment either too simple or over their heads.

This book attempts to follow a logical progression, more or less following the flow of information from the remotely sensed object to the user of the data. The first four chapters lay the general foundations. Chapter 1 sets the subject in context. Chapter 2 is a nonrigorous treatment of electromagnetic wave propagation in free space, which can be regarded as a compendium of necessary results. It will represent, I hope, mostly revision to most readers, although it assumes little or no previous knowledge of Fourier transforms or of Fraunhofer diffraction theory. Chapter 3 discusses the interaction of electromagnetic radiation with smooth and rough surfaces and with inhomogeneous materials such as soil and snow, and Chapter 4 discusses the interaction of radiation with the atmosphere and ionosphere. By this stage of the book, our information is, as it were, travelling upwards towards the sensor. Chapters 5 to 9 discuss the sensors themselves, beginning with the more familiar passive sensors and going on to consider active systems. These chapters explain, so far as is consistent with the level of the book, the functioning of the sensors, important operational constraints, and some of the more important applications derived from them. These chapters also include brief descriptions of real instruments on existing or forthcoming satellite missions. The platforms on which the sensors are supported are discussed in Chapter 10. After a short discussion of remote sensing from aircraft, the chapter devotes itself to satellite orbits. Finally, Chapter 11 presents an introduction to the data processing aspects of remote sensing, particularly digital image processing and analysis. An appendix contains tables of data frequently needed in remote sensing. A short list of problems or exercises is included at the end of most chapters. Most of these problems are reasonably straightforward (I have tried to indicate which are for 'enthusiasts'), designed to extend and consolidate the reader's understanding of the material. Some problems will require material from more than one chapter for xvi

Cambridge University Press 978-1-107-00473-3 - Physical Principles of Remote Sensing: Third Edition W. G. Rees Frontmatter More information

Preface

their solution. The problems are of a more or less 'academic' format, many of them having originated as exercises for students.

It will perhaps be useful to indicate those features of the book that have been preserved from the second edition and those that are new. The underlying rationale has not changed. It has still been my intention to keep the book as short as possible, consistent with clarity, although this edition is significantly longer than the second because it includes new material. In particular, the treatment of stereophotography (Chapter 5), laser profiling (Chapter 8), synthetic aperture radar interferometry (Chapter 9), and digital image processing (Chapter 11) have all been significantly expanded. As before, the aim has been to teach principles of remote sensing rather than to present a lot of technical or engineering detail. However, the inclusion of brief discussions of real sensor systems or surveys of types of sensor, introduced in the second edition, has been continued, expanded and updated, particularly in Chapter 6, which deals with visible-wavelength and infrared systems. The book's bibliography has been brought up to date, although I have still attempted to keep it short enough so as not to overwhelm the reader with an enormous list of references. Some selection and omission has therefore been necessary, and I hope my colleagues will forgive me if my selection does not tally with theirs. One particular goal in compiling the bibliography has been to include enough recent references to allow the reader efficiently to find his or her way into the modern literature. As in the first edition, I have deliberately avoided the rigorous consistency in the use of *symbols* that demands that a given symbol be used to represent only a single physical quantity. Because of the wide scope of remote sensing, this would lead to an unforgivably confusing proliferation of symbols with many sub- and superscripts. Consistency of symbols is therefore confined to sections of the text that deal with a single topic, except for a few 'universal' symbols such as h for the Planck constant and ω for angular frequency, which are used throughout the book. SI units are used consistently, although a table in the appendix gives equivalents for some common non-SI units.

There are some other important changes in this edition. The number of illustrations has increased by about a third, with much greater use of colour. This is especially valuable in the understanding of satellite imagery. As aids to understanding the ideas presented in the book, each chapter apart from the introductory Chapter 1 now includes more or less non-technical summaries and a set of review questions. The summaries, which are presented in boxes at the end of each major section, can be read consecutively as a 12 000 word outline of the whole book, but are probably most usefully read where they have been placed, at the end of each section, where they can be used to check the reader's understanding of the main points without getting lost in mathematical detail. The review questions can also be used as an aid to comprehension of the material: when teaching university courses based on some of this material I have found it helpful to ask students to prepare five-minute responses to such review questions, which they can then present to the class.

One difficulty that I found in the first two editions of the book was that of clearly explaining the behaviour of some time-dependent phenomena. Examples of this include the propagation of electromagnetic radiation, the orbit of a satellite around the Earth, and the manner in which the pulse of radiation from a radar altimeter interacts with a rough surface, although there are others. I have developed some computer animations to illustrate such phenomena, and these are accessible on the book's website – another innovation for this edition. They are indicated by a mouse-button icon in the margin.

xvii

Cambridge University Press 978-1-107-00473-3 - Physical Principles of Remote Sensing: Third Edition W. G. Rees Frontmatter More information

Preface

The website also provides hints and solutions to the problems, useful links, and a repository of computer programs that can be used to explore some of the ideas in the book. The problems included at the end of each chapter are supplemented, in the website, by suggested practical exercises. Particular emphasis has been placed on exercises designed to consolidate the reader's understanding of the main ideas in Chapter 11. It is expected that all of the web-based material will evolve over time.

This book arose from a course of undergraduate lectures delivered first at the Scott Polar Research Institute, and later at the Cavendish Laboratory, both in the University of Cambridge. I am grateful to both departments for letting me try out my ideas. Many people are owed thanks for their contributions to the writing of the first edition. It is difficult to single out individuals, but I particularly wish to thank Andrew Cliff, Bernard Devereux, Michael Gorman, Christine Rees and Michael Rycroft. Subsequently I have developed some of the concepts in the book for teaching to audiences with a wider range of background knowledge than the book's intended readership, including undergraduates in the Department of Geography at the University of Cambridge and at the Geography Faculty of Moscow State University, and children as young as six years old. Much of the credit for any improvements that I may have made to the book since the first edition lies with the constructive criticisms of the users and reviewers of the first edition and of the many graduate and undergraduate students who I have had the pleasure of working with since 1990, as well as with my professional colleagues. In particular, I thank Neil Arnold, Olga Tutubalina and Sophie Weeks. As always, Cambridge University Press has provided advice and encouragement whenever it was needed.

ACKNOWLEDGEMENTS

Permission to reproduce copyright and other material from the following sources is gratefully acknowledged: Colorado University, Dundee Satellite Receiving Station (NEODAAS University of Dundee), the European Space Agency, GeoEye, International Space Company Kosmotras, the Japanese Aerospace Exploration Agency, Jim Doty Jr, the National Aeronautics and Space Administration (USA), the National Geospace Intelligence Agency (USA), the National Oceanic and Atmospheric Administration (USA), the National Snow and Ice Data Center (USA), the Airborne Research and Survey Facility (ARSF) of the Natural Environment Research Council (UK), Nauchnyy Tsentr Operativnogo Monitoringa Zemli (Research Centre for Earth Operative Monitoring, Russia), the Royal Society, the University of Alabama in Hunstville, and the University of Cambridge. Some illustrations are derived from public-domain Internet resources. I have been particularly grateful for the fact that the United States Copyright Law ensures that a huge amount of material produced by NASA, NOAA and other organisations can be reproduced without infringing copyright.

The text, all of the animations and many of the illustrations were prepared using free software, principally OpenOffice (for text processing), Zotero (for management of references), ImageJ and MultiSpec (for image processing), QGIS (for geographic information system processing), Plot and Veusz (for preparing graphs) and GNU Octave (for many tasks).