
Cambridge University Press & Assessment
978-1-107-00461-0 — Microwave and Wireless Measurement Techniques
Nuno Borges Carvalho , Dominique Schreurs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Measurement of wireless
transceivers

1.1 Introduction

This book is entitled Microwave and Wireless Measurement Techniques, since the

objective is to identify and understand measurement theory and practice in wireless

systems.

In this book, the concept of a wireless system is applied to the collection of sub-

systems that are designed to behave in a particular way and to apply a certain procedure

to the signal itself, in order to convert a low-frequency information signal, usually called

the baseband signal, to a radio-frequency (RF) signal, and transmit it over the air, and

vice versa.

Figure 1.1 presents a typical commercial wireless system architecture. The main

blocks are amplifiers, filters, mixers, oscillators, passive components, and domain con-

verters, namely digital to analog and vice versa.

In each of these sub-systems the measurement instruments will be measuring voltages

and currents as in any other electrical circuit. In basic terms, what we are measuring are

always voltages, like a voltmeter will do for low-frequency signals. The problem here

is stated as how we are going to be able to capture a high-frequency signal and identify

and quantify its amplitude or phase difference with a reference signal. This is actually

the problem throughout the book, and we will start by identifying the main figures of

merit that deserve to be measured in each of the identified sub-systems.

In order to do that, we will start by analyzing a general sub-system that can be

described by a network. In RF systems it can be a single-port, two-port, or three-port

network. The two-port network is the most common.

1.2 Linear two-port networks

1.2.1 Microwave description

A two-port network, Fig. 1.2, is a network in which the terminal voltages and currents

relate to each other in a certain way.

The relationships between the voltages and currents of a two-port network can be

given by matrix parameters such as Z-parameters, Y -parameters, or ABCD parameters.

The reader can find more information in [1, 2].
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2 Measurement of wireless transceivers

Figure 1.1 A typical wireless system architecture, with a full receiver and transmitter stage.
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Figure 1.2 A two-port network, presenting the interactions of voltages and currents at its ports.

The objective is always to relate the input and output voltages and currents by using

certain relationships. One of these examples using Y -parameters is described by the

following equation:
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Figure 1.3 Two-port scattering parameters, where the incident and reflected waves can be seen in

each port.

As can be seen, these Y -parameters can be easily calculated by considering the other

port voltage equal to zero, which means that the other port should be short-circuited.

For instance, y11 is the ratio of the measured current at port 1 and the applied voltage at

port 1 by which port 2 is short-circuited.

Unfortunately, when we are dealing with high-frequency signals, a short circuit is not

so simple to realize, and in that case more robust high-frequency parameters should be

used.

In that sense some scientists started to think of alternative ways to describe a two-port

network, and came up with the idea of using traveling voltage waves [1, 2]. In this case

there is an incident traveling voltage wave and a scattered traveling voltage wave at

each port, and the network parameters become a description of these traveling voltage

waves, Fig. 1.3.

One of the most well-known matrices used to describe these relations consists of the

scattering parameters, or S-parameters, by which the scattered traveling voltage waves

are related to the incident traveling voltage waves in each port.

In this case each voltage and current in each port will be divided into an incident

and a scattered traveling voltage wave, V +(x) and V −(x), where the + sign refers

to the incident traveling voltage wave and the − sign refers to the reflected traveling

voltage wave. The same can be said about the currents, where I+(x) = V +(x)/Z0 and

I−(x) = V −(x)/Z0, Z0 being the characteristic impedance of the port. The value x

now appears since we are dealing with waves that travel across the space, being guided

or not, so V +(x) = Ae−γ x [1, 2].

These equations can be further simplified and normalized to be used efficiently:

v(x) =
V (x)
√

Z0

i(x) =
√

Z0I (x)

(1.2)

Then each normalized voltage and current can be decomposed into its incident and

scattered wave. The incident wave is denoted a(x) and the scattered one b(x):
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4 Measurement of wireless transceivers

v(x) = a(x) + b(x)

i(x) = a(x) − b(x)
(1.3)

where

a(x) =
V +(x)
√

Z0

b(x) =
V −(x)
√

Z0

(1.4)

with

V =
√

Z0(a + b)

I =
1

√
Z0

(a − b)

Fortunately, we also know that in a load the reflected wave can be related to the

incident wave using its reflection coefficient �(x):

b(x) = �(x)a(x)

or

�(x) =
b(x)

a(x)
(1.5)

In this way it is then possible to calculate and use a new form of matrix parame-

ter to describe these wave relationships in a two-port network, namely the scattering

parameters:

[

b1

b2

]

=
[

S11 S12

S21 S22

] [

a1

a2

]

(1.6)

where

Sij =
bi(x)

aj (x)

∣

∣

∣

∣

ak=0 to k �=j

(1.7)

As can be deduced from the equations, and in contrast to the Y -parameters, for the

calculation of each parameter, the other port should have no reflected wave. This cor-

responds to matching the other port to the impedance of Z0. This is easier to achieve

at high frequencies than realizing a short circuit or an open circuit, as used for Y - and

Z-parameters, respectively.

Moreover, using this type of parameter allows us to immediately calculate a number

of important parameters for the wireless sub-system. On looking at the next set of equa-

tions, it is possible to identify the input reflection coefficient immediately from S11, or,

similarly, the output reflection coefficient from S22:
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Figure 1.4 Power waves traversing a guided structure.

S11 =
b1(x)

a1(x)

∣

∣

∣

∣

a2=0

=
Z1 − Z0

Z1 + Z0

(1.8)

S22 =
b2(x)

a2(x)

∣

∣

∣

∣

a1=0

=
Z2 − Z0

Z2 + Z0

(1.9)

The same applies to the other two parameters, S21 and S12, which correspond to

the transmission coefficient and the reverse transmission coefficient, respectively. The

square of their amplitude corresponds to the forward and reverse power gain when the

other port is matched.

Note that in the derivation of these parameters it is assumed that the other port is

matched. If that is not the case, the values can be somewhat erroneous. For instance,

�in(x) = S11 only if the other port is matched or either S12 or S21 is equal to zero. If

this is not the case, the input reflection should be calculated from

�in = S11 +
S12S21�L

1 + S22�L
(1.10)

More information can be found in [1, 2].

With the parameters based on the wave representation that have now been defined,

several quantities can be calculated. See Fig. 1.4.

For example, if the objective is to calculate the power at terminal IN, then

P = V I ∗ = aa∗ − bb∗ = |a|2 − |b|2 (1.11)

Here |a|2 actually corresponds to the incident power, while |b|2 corresponds to the

reflected power.

Important linear figures of merit that are common to most wireless sub-systems can

now be defined using the S-parameters.
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6 Measurement of wireless transceivers
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Figure 1.5 A noisy device, Y -parameter representation, including noise sources.

1.2.2 Noise

Another very important aspect to consider when dealing with RF and wireless systems

is the amount of introduced noise. Since for RF systems the main goal is actually to

achieve a good compromise between power and noise, in order to achieve a good noise-

to-power ratio, the study of noise is fundamental. For that reason, let us briefly describe

the noise behavior [3] in a two-port network.

A noisy two-port network can be represented by a noiseless two-port network and a

noise current source at each port. An admittance representation can be developed.

The voltages and currents in each port can be related to the admittance matrix:

[

i1

i2

]

= [Y ]
[

v1

v2

]

+
[

in1

in2

]

(1.12)

(Fig. 1.5). A correlation matrix CY can also be defined, as

[CY ] =
[〈

in1i
∗
n1

〉 〈

in1i
∗
n2

〉

〈

in2i
∗
n1

〉 〈

in2i
∗
n2

〉

]

(1.13)

The correlation matrix relates the properties of the noise in each port. For a passive

two-port network, one has

[CY ] = 4kBT 	f Re(Y ) (1.14)

where kB is the Boltzmann constant (1.381 × 10−23J/K), T the temperature (typically

290 K), 	f the bandwidth, and Y the admittance parameter.

Actually these port parameters can also be represented by using scattering parameters.

In that case the noisy two-port network is represented by a noiseless two-port network

and the noise scattering parameters referenced to a nominal impedance at each port

(Fig. 1.6).

[

b1

b2

]

= [S]
[

a1

a2

]

+
[

bn1

bn2

]

(1.15)

where bn1 and bn2 can be considered noise waves, and they are related using the corre-

lation matrix, CS . The correlation matrix CS is defined by

[CS] =
[〈

bn1b
∗
n1

〉 〈

bn1b
∗
n2

〉

〈

bn2b
∗
n1

〉 〈

bn2b
∗
n2

〉

]

(1.16)
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Figure 1.6 A noisy device, S-parameter representation.

and, for a passive two-port network,

[CS] = kBT 	f
(

(I ) − (S)(S)T∗) (1.17)

where (I ) is the unit matrix and (S)T∗ denotes transpose and conjugate.

1.3 Linear FOMs

After having described linear networks, we proceed to explain the corresponding figures

of merit (FOMs). We make a distinction between FOMs that are defined on the basis of

S-parameters (Section 1.3.1) and those defined on the basis of noise (Section 1.3.2).

1.3.1 Linear network FOMs

1.3.1.1 The voltage standing-wave ratio

The voltage standing-wave ratio (VSWR) is nothing more than the evaluation of the port

mismatch. Actually, it is a similar measure of port matching, the ratio of the standing-

wave maximum voltage to the standing-wave minimum voltage. Figure 1.7 shows dif-

ferent standing-wave patterns depending on the load.

In this sense it therefore relates the magnitude of the voltage reflection coefficient and

hence the magnitude of either S11 for the input port or S22 for the output port.

The VSWR for the input port is given by

VSWRin =
1 + |S11|
1 − |S11|

(1.18)

and that for the output port is given by

VSWRout =
1 + |S22|
1 − |S22|

(1.19)
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8 Measurement of wireless transceivers
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Figure 1.7 The VSWR and standing-wave representation. The standing wave can be seen for

different values of the VSWR.

1.3.1.2 Return loss

Other important parameters are the input and output return losses. The input return loss

(RLin) is a scalar measure of how close the actual input impedance of the network is to

the nominal system impedance value, and is given by

RLin =
∣

∣20 log10

∣

∣ S11

∣

∣

∣

∣ dB (1.20)

It should be noticed that this value is valid only for a single-port network, or, in a

two-port network, it is valid only if port 2 is matched; if not, S11 should be exchanged

for the input reflection coefficient as presented in Eq. (1.10). As can be seen from its

definition, the return loss is a positive scalar quantity.

The output return loss (RLout) is similar to the input return loss, but applied to the

output port (port 2). It is given by

RLout =
∣

∣20 log10

∣

∣ S22

∣

∣

∣

∣ dB (1.21)

1.3.1.3 Gain/insertion loss

Since S11 and S22 have the meaning of reflection coefficients, their values are always

smaller than or equal to unity. The exception is the S11 of oscillators, which is larger

than unity, because the RF power returned is larger than the RF power sent into the

oscillator port.

The S21 of a linear two-port network can have values either smaller or larger than

unity. In the case of passive circuits, S21 has the meaning of loss, and is thus restricted

to values smaller than or equal to unity. This loss is usually called the insertion loss.

In the case of active circuits, there is usually gain, or in other words S21 is larger than

unity. In the case of passive circuits, S12 is equal to S21 because passive circuits are

reciprocal. The only exception is the case of ferrites. In the case of active circuits, S12

is different from S21 and usually much smaller than unity, since it represents feedback,
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1.3 Linear FOMs 9

which is often avoided by design due to the Miller effect. The gain or loss is typically

expressed in decibels:

gain/insertion loss =
∣

∣20 log10

∣

∣ S21

∣

∣

∣

∣ dB (1.22)

1.3.2 Noise FOMs

1.3.2.1 The noise factor

The previous results actually lead us to a very important and key point regarding noisy

devices, that is, the FOM called the noise factor (NF), which characterizes the degrada-

tion of the signal-to-noise ratio (SNR) by the device itself.

The noise factor is defined as follows.

D E F I N I T I O N 1.1 The noise factor (F) of a circuit is the ratio of the signal-to-noise

ratio at the input of the circuit to the signal-to-noise ratio at the output of the circuit:

F =
SI/NI

SO/NO
(1.23)

where

SI is the power of the signal transmitted from the source to the input of the two-port

network

SO is the power of the signal transmitted from the output of the two-port network to

the load

NI is the power of the noise transmitted from the source impedance ZS at temperature

T0 = 290 K to the input of the two-port network

NO is the power of the noise transmitted from the output of the two-port network to the

load

The noise factor can be expressed as

F =
Nad + GANaI

GANaI
(1.24)

where GA is the available power gain of the two-port network (for its definition, see

Section 1.8), Nad is the additional available noise power generated by the two-port net-

work, and NaI is the available noise power generated by the source impedance:

NaI = 4kBT0 	f (1.25)

As can be seen from Eq. (1.24), F is always greater than unity, and it does not depend

upon the load ZL. It depends exclusively upon the source impedance ZS.

Using reference [3], the noise factor can also be related to the S-parameters by:

F = Fmin + 4
RN

Z0

|�OPT − �s|2

(1 − |�s|2)|1 + �OPT|2
(1.26)

where Fmin is the minimum noise factor, RN is called the noise resistance, �OPT is the

optimum source reflection coefficient for which the noise factor is minimum.
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10 Measurement of wireless transceivers

This formulation can also be made in terms of Y -parameters, and can be expressed as

a function of the source admittance YS:

F = Fmin +
RN

Re(YS)
|YS − YOPT|2 (1.27)

where YOPT is the optimum source admittance for which the noise factor is minimum.

The terms FMIN, RN, and �OPT (or YOPT) constitute the four noise parameters of the

two-port network. They can be related to the correlation matrices very easily [3].

The noise figure (NF) is simply the logarithmic version of the noise factor, F .

1.3.2.2 Cascade of noisy two-port components

If we cascade two noisy devices with noise factors F1 and F2, and with available power

gains GA1 and GA2, with a source impedance at temperature T0 = 290 K, the additional

available noise powers are

Nad1 = (F1 − 1)GA1kBT0 	f

Nad2 = (F2 − 1)GA2kBT0 	f
(1.28)

The available noise power at the output of the second two-port network is

NaO2 = kBT0 	f GA1GA2 + Nad1GA2 + Nad2 (1.29)

The total noise factor is thus

F =
NaO2

kBT0 	f GA1GA2

(1.30)

This finally leads to the well-known noise Friis formula,

F = F1 +
F2 − 1

GA1

(1.31)

In this expression the gain is actually the available power gain of the first two-port

network, which depends on the output impedance of the first network. F1 depends on

the source impedance, and F2 depends on the output impedance of the first two-port

network.

The general Friis formula is

F = F1 +
F2 − 1

GA1
+

F3 − 1

GA1GA2
+ · · · +

FN − 1

GA1GA2 . . . GAN−1

1.4 Nonlinear two-port networks

In order to better understand nonlinear distortion effects, let us start by explaining the

fundamental properties of nonlinear systems. Since a nonlinear system is defined as a

system that is not linear, we will start by explaining the fundamentals of linear systems.

Linear systems are systems that obey superposition. This means that they are systems

whose output to a signal composed by the sum of elementary signals can be given as

the sum of the outputs to these elementary signals when taken individually.
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