
PART I

MATRIX THEORY

Matrix theory is a powerful field of mathematics that has found applications in the
solution of several real-world problems, ranging from the solution of algebraic equa-
tions to the solution of differential equations. Its importance has also been enhanced
by the rapid development of several computer programs that have improved the
efficiency of matrix analysis and the solution of matrix equations.

We have allotted three chapters to discussing matrix theory. Chapter 1 contains
the basic notations and operations. These include conventions and notations for
the various structural, algebraic, differential, and integral operations. As such, this
chapter focuses on how to formulate problems in terms of matrix equations, the
various approaches of matrix algebraic manipulations, and matrix partitions.

Chapter 2 then focuses on the solution of the linear equation given by Ax = b,
and it includes both direct and indirect methods. The most direct method is to find
the inverse of A and then evaluate x = A−1b. However, the major practical issue is
that matrix inverses become unwieldy when the matrices are large. This chapter is
concerned with finding the solutions by reformulating the problem to take advantage
of available matrix properties. Direct methods use various factorizations of A based
on matrices that are more easily invertible, whereas indirect methods use an iterative
process starting with an initial guess of the solution. The methods can then be applied
to linear least-squares problems, as well as to the solution of multivariable nonlinear
equations.

Chapter 3 focuses on matrices as operators. In this case, the discussion is con-
cerned with the analysis of matrices, for example, using eigenvalues and eigenvec-
tors. This allows one to obtain diagonalized matrices or Jordan canonical forms.
These forms provide efficient tools for evaluating matrix functions, which are also
very useful for solving simultaneous differential equations. Other analysis tools such
as singular values decomposition, matrix norms, and condition numbers are also
included in the chapter.

The matrix theory topics are also used in the other parts of this book. In Part II,
we can use matrices to represent vector coordinates and tensors. The operations and
vector/tensor properties can also be evaluated and analyzed efficiently using matrix
theory. For instance, the mutual orthogonalities among the principal axes of a sym-
metric tensor are immediate consequences of the properties of matrix eigenvectors.
In Part III, matrices are also shown to be indispensable tools for solving ordinary
differential equations. Specifically, the solution and analysis of a set of simultaneous
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2 Matrix Theory

linear ordinary differential equations can be represented in terms of matrix expo-
nential functions. Moreover, numerical solution methods can now be coded in matrix
forms. Finally, in Part IV of the book, both the finite difference and finite elements
methods reduce partial differential equations to linear algebraic equations. Thus the
tools discussed in Chapter 2 are strongly applicable because the matrices resulting
from either of these methods will likely be large and sparse.
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1 Matrix Algebra

In this chapter, we review some definitions and operations of matrices. Matrices
play very important roles in the computation and analysis of several mathematical
problems. They allow for compact notations of large sets of linear algebraic equa-
tions. Various matrix operations such as addition, multiplication, and inverses can
be combined to find the required solutions in a more tractable manner. The exis-
tence of several software tools, such as MATLAB, have also made it very efficient
to approach the solution by posing several problems in the form of matrix equa-
tions. Moreover, the matrices possess internal properties such as determinant, rank,
trace, eigenvalues, and eigenvectors, which can help characterize the systems under
consideration.

We begin with the basic notation and definitions in Section 1.1. The matrix nota-
tions introduced in this chapter are used throughout the book. Then in Section 1.2,
we discuss the various matrix operations. Several matrix operations should be famil-
iar to most readers, but some may not be as familiar, such as Kronecker products.
We have classified the operations as either structural or algebraic. The structural
operations are those operations that involve only the collection and arrangement of
the elements. On the other hand, the algebraic operations pertain to those in which
algebraic operations are implemented among the elements of a matrix or group of
matrices. The properties of the different matrix operations such as associativity, com-
mutativity, and distributivity properties are summarized in Section 1.3. In addition,
we discuss the properties of determinants and include some matrix inverse formulas.
The properties and formulas allow for the manipulation and simplification of matrix
equations. These will be important tools used throughout this book.

In Section 1.4, we explore various block matrix operations. These operations are
very useful when the structure of the matrices can be partitioned into submatrices.
These block operations will also prove to be very useful when solving large sets of
equations that exhibit a specific pattern.

From algebraic operations, we then move to topics involving differential and
integral calculus in Section 1.5. We first define and fix various notations for the
derivatives and integrals of matrices. These notations are also used throughout the
book. The various properties of the matrix calculus operations are also summarized
in this section. One of the applications of matrix calculus is optimization, in which the
concept of positive (and negative) definiteness is needed for sufficient conditions. We
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4 Matrix Algebra

devote Section A.5 in the appendix to explaining positive or negative definiteness in
more detail.

Finally, in Section 1.6, we include a brief discussion on sparse matrices. These
matrices often result when the problem involves a large collection of smaller ele-
ments that are connected with only few of the other elements, such as when we
solve differential equations by numerical methods, for example, the finite difference
methods or finite element methods.

1.1 Definitions and Notations

The primary application of matrices is in solving simultaneous linear equations.
These equations can come from solving problems based on mass and energy balance
of physical, chemical, and biological processes; Kirchhoff’s laws in electric circuits;
force and moment balances in engineering structures; and so forth. The size of the
unknowns for these problems can be quite large, so the solution can become quite
complicated. This is especially the case with modern engineering systems, which
typically contain several stages (e.g., staged operations in chemical engineering), are
highly integrated (e.g., large-scale integration in microelectronics), or are structurally
large (e.g., large power grids and large buildings). Matrix methods offer techniques
that allow for tractability and computational efficiency.

When solving large nonlinear problems, numerical methods become a neces-
sary approach. The numerical computations often involve matrix formulations. For
instance, several techniques for solving nonlinear equations and nonlinear optimiza-
tion problems implement Newton’s method and other gradient-based methods, in
which the calculations include matrix operations. Matrix equations also result from
finite approximations of systems of differential equations. For boundary value prob-
lems, the internal values are to be solved such that both the boundary conditions and
the differential equations that describe the systems are satisfied. Here, the numeri-
cal techniques include finite element methods and finite difference methods, both of
which translate the problem back to a linear set of equations.

Aside from calculating the unknowns or solving differential equations, matrix
methods are also useful in operator analysis and design. In this case, matrix equations
are analyzed in terms of operators, inputs, and outputs. The matrices associated with
the operators can be formulated to obtain the desired behavior. For example, if
we want to move a 3D point a = (x, y, z) to another position, say, b = (̂x, ŷ, ẑ), in
a particular way, for instance, to move it radially outward or rotate it at specified
degrees counterclockwise, then we can build matrices that would produce the desired
effects. Conversely, for a system (mechanical, chemical, electrical, biological, etc.)
that can be written in matrix forms (both in differential equations and algebraic
equations), we can often isolate the matrices associated with system operations and
use matrix analysis to explore the capabilities and behavior of the system.

It is also worth mentioning that, in addition to the classical systems that are mod-
eled with algebraic and differential equations, there are other application domains
that use matrix methods extensively. These include data processing, computational
geometry, and network analysis. In data processing, matrix methods help in regres-
sion analysis and statistical data analysis. These applications also include data mining
in search engines, bioinformatics, and computer security. Computational geome-
try also uses matrix methods to handle and analyze large sets of data. Applica-
tions include computer graphics and visualization, which are also used for pattern
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1.1 Definitions and Notations 5

recognition purposes. In network analysis, matrix methods are used together with
graph theory to analyze the connectivity and effects of large, complex structures.
Applications include the analysis of communication and control systems, as well as
large power grids.

We now begin with the definition of a matrix and continue with some of the
notations and conventions that are used throughout this book.

Definition 1.1. A matrix is a collection of objects, called the elements of the
matrix, arranged in rows and columns.

These elements of the matrix could be numbers, such as

A =
(

1 0 −0.3

−2 3 + i 1
2

)
with i = √−1

or functions, such as

B =
(

1 2x(t) + a∫
sin(ωt)dt dy/dt

)
The elements of matrices are restricted to a set of mathematical objects that allow
algebraic binary operations such as addition, subtraction, multiplication, and divi-
sion. The valid elements of the matrix are referred to as scalars. Note that a scalar is
not the same as a matrix having only one row and one column.

We often use capital letters to denote matrices, whereas the corresponding small
letters stand for the elements. Thus the elements of matrix A positioned at the ith row
and j th column are denoted as aij , for example, for A having N rows and M columns,

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM

⎞⎟⎟⎟⎠ (1.1)

The size of the matrix is given by the symbol “[=]”, for example, for matrix A having
N rows and M columns,

A [=] N × M or A[N×M] (1.2)

A row vector is a matrix having one row, whereas a column vector is a matrix
having one column. The length of a vector means the number of elements of the row
or column vector. If the type of vector has not been specified, we take it to mean a
column vector. We often use bold small letters to denote vectors. A basic vector is
the ithunit vector of length N denoted by ei,

ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← ith element (1.3)

The length N of the unit vector is determined by context.
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6 Matrix Algebra

A square matrix is a matrix with the same number of columns and rows. Spe-
cial cases include lower triangular, upper triangular, and diagonal matrices. Lower
triangular matrices have zero elements above the main diagonal, whereas upper
triangular matrices have zero elements below the main diagonal. Diagonal matrices
have zero off-diagonal elements. The diagonal matrix is also represented by

D = diag
(

d11,d22, . . . ,dNN

)
(1.4)

A special diagonal matrix in which the main diagonal elements are all 1’s is known
as the identity matrix, denoted by I. If the size of the identity matrix needs to
be specified, then we use IN to denote an N × N identity matrix. An extensive
list of different matrices that have special forms such as bidiagonal, tridiagonal,
Hessenberg, Toeplitz, and so forth are given in Tables A.1 through A.5 in Section A.1
as an appendix for easy reference.

1.2 Fundamental Matrix Operations

We assume that the reader is already familiar with several matrix operations. The
purpose of the following sections is to summarize these operations, introduce our
notations, and relate them to some of the available MATLAB commands. We
can divide matrix operations into two major categories. The first category involves
the restructuring or combination of matrices. The second category includes the
operations that contain algebraic computations such as addition, multiplication, and
inverses.

1.2.1 Matrix Restructuring Operations

A list of matrix rearrangement operations with their respective notations are sum-
marized in Tables 1.1 and 1.2 (together with some MATLAB commands associated
with the operations).

The row and column augmentation operations are designated by horizontal and
vertical bars, respectively. These are used extensively throughout the book because
we take advantage of block matrix operations. The reshaping operations are given
by the vectorization operation and reshape operation. Both these operations are
quite useful when reformulating equations such as HX + XB + CXD = F into the
familiar linear equation form given by Ax = b.

There are two operations that involve exchanging the roles of rows and columns:
the standard transpose operation, which we denote by superscript T , and the conju-
gate transpose, which we denote by superscript asterisk. In general, AT �= A∗, except
when the elements of A are all real. When A = AT , we say that A is symmetric, and
when A = A∗, we say that A is Hermitian. The two cases are generally not the same.
For instance, let

A =
(

1 + i 2
2 3

)
B =

(
1 2 + i

2 − i 3

)
then A is symmetric but not Hermitian, whereas B is Hermitian but not symmetric.
On the other hand, when A = −AT , we say that A is skew-symmetric, and when
A = −A∗, we say that A is skew-Hermitian.
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1.2 Fundamental Matrix Operations 7

Table 1.1. Matrix restructuring operations

Operation Notation Rule

1 Column Augment

C =
(

A B
)

MATLAB: C=[A,B]

⎛⎜⎜⎝
c11 · · · c1,M+P

...
. . .

...
cN1 · · · cN,M+P

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a11 · · · a1M b11 · · · b1P

...
. . .

...
...

. . .
...

aN1 · · · aNM bN1 · · · bNP

⎞⎟⎟⎠

2 Row Augment

C =
(

A
B

)

MATLAB: C=[A;B]

⎛⎜⎜⎝
c11 · · · c1,M

...
. . .

...
cN+P,1 · · · cN+P,M

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1M

...
. . .

...
aN1 · · · aNM

b11 · · · b1M

...
. . .

...
bP1 · · · bPM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3 Vectorize

C = vec (A)

MATLAB: C=A(:)

⎛⎜⎜⎝
c1

...
cN·M

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
A•,1

...

A•,M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where A•,i is the ith column of A

The submatrix operation is denoted by using a list of k subscript indices and �

superscript indices to refer to the rows and columns, respectively, extracted from a
matrix. For instance,

A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ → A2,3
1,2 =

(
2 3
5 6

)

For a square matrix, if the diagonals of the submatrix are a subset of the diagonals
of the original matrix, then we call it a principal submatrix. This happens if the
superscript indices and the subscript indices of the submatrix are the same. For
instance,

A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ → A1,3
1,3 =

(
1 3
7 9

)

then A1,3
1,3 is a principal submatrix.
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8 Matrix Algebra

Table 1.2. Matrix restructuring operations

Operation Notation Rule

4 Reshape

C =
reshape (v,N,M)

MATLAB:
reshape(v,N,M)

C =

⎛⎜⎜⎝
v1 vN+1 v(M−1)N+1

...
... · · ·

...
vN v2N vMN

⎞⎟⎟⎠
where v is a vector of length NM

5 Transpose

C = AT

MATLAB: C=A.’

C =

⎛⎜⎜⎝
a11 · · · aM1

...
. . .

...
a1N · · · aMN

⎞⎟⎟⎠

6
Conjugate

Transpose

C = A∗

MATLAB: C=A’

C =

⎛⎜⎜⎝
a11 · · · aM1

...
. . .

...
a1N · · · aMN

⎞⎟⎟⎠
where aij = complex conjugate of aij

7 Submatrix

C = Aj1,j2 ...,j�
i1,i2,...,ik

MATLAB:
rows=[i1,i2,...]
cols=[j1,j2,...]
C=A(rows,cols)

C[ k×� ] =

⎛⎜⎜⎝
ai1 j1 · · · ai1 j�

...
. . .

...
aik j1 · · · aik j�

⎞⎟⎟⎠

8 (ij)th Redact

C = Aij↓

MATLAB:
C=A
C(i,:)=[ ]
C(:,j)=[ ]

C[ (N−1)×(M−1) ] =
⎛⎜⎜⎜⎜⎜⎝

A1,...,j−1
1,...,i−1 Aj+1,...,M

1,...,i−1

A1,...,j−1
i+1,...,N Aj+1,...,M

i+1,...,N

⎞⎟⎟⎟⎟⎟⎠

Next, the operation to remove some specified rows and columns is referred to
here as the (ij)th redact operation. We use Aij↓ to denote the removal of the ith row
and j th column. For instance,

A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ → A23↓ =
(

1 2
7 8

)
(1.5)

This operation is useful in finding determinants, cofactors, and adjugates.
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1.2 Fundamental Matrix Operations 9

Table 1.3. Matrix algebraic operations

MATLAB
Operation Notation Rule commands

1 Sum C = A + B cij = aij + bij C=A+B

2 Scalar Product C = qA cij = q aij C=q*A

3 Matrix Product C = AB cij = ∑K
k=1 aikbkj C=A*B

4
Haddamard

Product
C = A ◦ B cij = aij bij C=A.*B

5
Kronecker

Product
(tensor product)

C = A ⊗ B

C =⎛⎜⎜⎝
a11B · · · a1MB

...
...

aN1B · · · aNMB

⎞⎟⎟⎠ C=kron(A,B)

6 Determinant
q = det (A)

or q = |A|
q =

∑
K

ε(K)

(
N∏

i=1

ai,ki

)
see (1.10)

q=det(A)

7 Cofactor q = cof (aij ) q = (−1)i+j
∣∣∣ Aij↓

∣∣∣
8 Adjugate C = adj (A) cij = cof (aji)

9 Inverse C = A−1 C = 1
|A| adj (A) C=inv(A)

10 Trace q = tr (A) q = ∑N
i=1 aii q=trace(A)

11 Real Part C = Real(A) cij = real (aij ) C=Real(A)

12 Imag Part C = Imag(A) cij = imag (aij ) C=Imag(A)

13 Complex Congugate C = A cij = aij C=Conj(A)

1.2.2 Matrix Algebraic Operations

The matrix algebraic operations can be classified further as either binary or unary.
For binary operations, the algebraic operations require two inputs, either a scalar
and a matrix or two matrices of appropriate sizes. For unary operations, the input is
a matrix, and the algebraic operations are applied on the elements of the matrix. The
matrix algebraic operations are given in Table 1.3, together with their corresponding
MATLAB commands.
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10 Matrix Algebra

1.2.2.1 Binary Algebraic Operations

The most basic matrix binary computational operations are matrix sums, scalar
products, and matrix products, which are quite familiar to most readers. To see
how these operations seem to be the natural consequences of solving simultaneous
equations, we refer the reader to Section A.2 included in the appendices.

Matrix products of A and B are denoted simply by C = AB, which requires
A[=]N × K, B[=]K × M and C[=]N × M (i.e., the columns of A must be equal to the
rows of B). If this is the case, we say that A and B are conformable for the operation
AB. Furthermore, based on the sizes of the matrices, A[N×K]B[K×M] = C[N×M], we see
that dropping the common value K leaves the size of C to be N × M. For the matrix
product AB, we say that A premultiplies B, or B postmultiplies A. For instance, let

A =
⎛⎝ 1 1

2 1
−1 0

⎞⎠ and B =
( −2 1

−1 3

)
then C = AB =

⎛⎝ −3 4
−5 5

2 −1

⎞⎠
However, B and A is not conformable for the product BA.

In several cases, AB �= BA, even if the reversed order is conformable, and thus
one needs to be clear whether a matrix premultiplies or postmultiplies another
matrix. For the special case in which switching the order yields the same product
(i.e., AB = BA), then we say that A and B commutes. It is necessary that commuting
matrices are square and have the same sizes.

We list a few key results regarding matrix products:

1. For matrix products between a matrix A[=]N × M and the appropriately sized
identity matrix, we have

AIM = INA = A

where IM and IN are identity matrices of size M and size N, respectively.
2. Based on the definition of matrix products, when B premultiplies A, the row

elements of B are pairwise multiplied with the column elements of A, and the
results are then summed together. This fact implies that to scale the ith row
of A by a factor di, we can simply premultiply A by a diagonal matrix D =
diag (d1, . . . ,dN). For instance,

DA =
⎛⎝ 2 0 0

0 1 0
0 0 −1

⎞⎠⎛⎝ 1 2 3
4 5 6
7 8 9

⎞⎠ =
⎛⎝ 2 4 6

4 5 6
−7 −8 −9

⎞⎠
Likewise, to scale the j th column of A by a factor dj , we can simply postmultiply
A by a diagonal matrix D = diag (d1, . . . ,dN). For instance,

AD =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠⎛⎝ 2 0 0
0 1 0
0 0 −1

⎞⎠ =
⎛⎝ 2 2 −3

8 5 −6
14 8 −9

⎞⎠

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00412-2 - Methods of Applied Mathematics for Engineers and Scientists
Tomas B. Co
Excerpt
More information

http://www.cambridge.org/9781107004122
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107004122: 


