

LCP for Microwave Packages and Modules

This comprehensive overview of electrical design using liquid crystal polymer (LCP) gives you everything you need to know to get up to speed on the subject. It describes successful design and development techniques for high-performance microwave and millimeter-wave packages and modules in an organic platform. These were specifically developed to make the most of LCP's inert, hermetic, lowcost, high-frequency (DC to 110+ GHz) properties.

First-hand accounts show you how to avoid various pitfalls during design and development. Extensive electrical design details are given in the areas of broadband circuit design for low-loss interconnects, couplers, splitter–combiners, baluns, phase shifters, time-delay units, power amplifier modules, receiver modules, phased-array antennas, flexible electronics, surface mounted packages, microelectromechanical systems (MEMS), and reliability. Ideal for engineers in the fields of RF, microwave, signal integrity, advanced packaging, material science, optical, and biomedical engineering.

Anh-Vu H. Pham is a Professor at the University of California in Davis, where he leads the Microwave Microsystems Laboratory. He has published around 100 peer-reviewed papers, several book chapters, and one book, is currently the Vice Chair of the IEEE International Microwave Symposium Technical Committee on Power Amplifiers and Integrated Devices, and is IEEE Distinguished Microwave Lecturer on Microwave LCP Packaging for the term 2010–2012.

Morgan J. Chen is a Staff Engineer at Futurewei Technologies, an R&D US subsidiary of Huawei Technologies. He has worked in both academia and industry for over a decade, advancing high-frequency packaging from DC to past 60 GHz.

Kunia Aihara is a Signal Integrity Engineer at Hirose Electric USA.

The Cambridge RF and Microwave Engineering Series

Series Editor

Steve C. Cripps, Distinguished Research Professor, Cardiff University

Peter Aaen, Jaime Plá, and John Wood, Modeling and Characterization of RF and Microwave Power FETs

Dominique Schreurs, Máirtín O'Droma, Anthony A. Goacher, and Michael Gadringer, *RF Amplifier Behavioral Modeling*

Fan Yang and Yahya Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering

Enrico Rubiola, Phase Noise and Frequency Stability in Oscillators

Earl McCune, Practical Digital Wireless Signals

Stepan Lucyszyn, Advanced RF MEMS

Patrick Roblin, Nonlinear FR Circuits and the Large-Signal Network Analyzer
Matthias Rudolph, Christian Fager, and David E. Root, Nonlinear Transistor
Model Parameter Extraction Techniques

John L. B. Walker, Handbook of RF and Microwave Solid-State Power Amplifiers

Forthcoming titles:

Sorin Voinigescu, High-Frequency Integrated Circuits

David E. Root, Jason Horn, and Jan Verspecht, X-Parameters

Richard Carter, Theory and Design of Microwave Tubes

Nuno Borges Carvalho and Dominique Scheurs, *Microwave and Wireless Measurement Techniques*

LCP for Microwave Packages and Modules

ANH-VU H. PHAM

University of California, Davis

MORGAN J. CHEN

Huawei Technologies

KUNIA AIHARA

Hirose Electric USA

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www. cambridge. org Information on this title: www.cambridge. org/9781107003781

© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

LCP for microwave packages and modules / [edited by] Anh-Vu H. Pham, Morgan J. Chen, Kunia Aihara.

p. cm. – (The Cambridge RF and microwave engineering series) Includes bibliographical references and index.

ISBN 978-1-107-00378-1 (hardback)

- 1. Microwave devices Materials. 2. Microelectronic packaging Materials.
- 3. Liquid crystal devices. 4. Polymer liquid crystals. I. Pham, Anh-Vu H.
- II. Chen, Morgan J. III. Aihara, Kunia.

TK7876.L387 2012

621.381'3-dc23 2012007343

ISBN 978-1-107-00378-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page x1
1	Introduction to electronic package engineering	1
	1.1 A brief discussion of standard packages	2
	1.2 Package design requirements	3
	1.2.1 Electrical requirements	3
	1.2.2 Weight requirements	5
	1.2.3 Package physical requirements	6
	1.2.4 Package thermal requirements	6
	1.2.5 Package reliability requirements	7
	1.2.6 Package material requirements	8
	1.3 Package design process	9
	1.3.1 Technology selection	9
	1.3.2 Computer-aided design (CAD)	10
	1.3.3 Test and measurement	13
	1.4 Concluding remarks	14
	References	14
2	Characteristics of liquid crystal polymer (LCP)	16
	Morgan J. Chen, Kunia Aihara, Cheng Chen, Anh-Vu H. Pham	
	2.1 LCP chemistry	17
	2.1.1 Liquid crystalline characteristics	17
	2.1.2 Polymeric characteristics	18
	2.2 Electrical characteristics	20
	2.2.1 Dielectric and loss tangent characterization from	
	DC to 60 GHz	20
	2.2.2 Dielectric and loss tangent characterization from	
	30 to 110 GHz	22
	2.2.3 Electrical characteristics over humidity	24
	2.3 Physical characteristics	27
	2.3.1 Dimensional stability	27
	2.3.2 Adhesion strengths for package integrity	29
	2.3.3 Flexibility	31

	^ .	
VI	Contei	ntc

	2.4 Environmental characterization	34
	2.4.1 Outgassing tests	34
	2.4.2 Permeability and leak-rate package testing	36
	2.5 Conclusions	38
	References	39
3	Fabrication techniques for processing LCP	41
	3.1 Introduction to LCP material availability	41
	3.1.1 Resin and pellet form	41
	3.1.2 Unclad LCP laminate form	42
	3.1.3 Copper-clad LCP laminate form	42
	3.2 Metallization on LCP	43
	3.2.1 Metal adhesion	44
	3.2.2 Casting	44
	3.2.3 Sputter-plating	44
	3.2.4 Metal lamination	44
	3.3. Standard PCB processing	46
	3.3.1 PCB standard cleaning	46
	3.3.2 PCB standard photolithography	47
	3.3.3 PCB standard drilling and milling	47
	3.3.4 PCB standard multilayer lamination	50
	3.3.5 Surface finish	55
	3.3.6 Roll-to-roll processing	57
	3.4 Advanced LCP processes	58
	3.4.1 Handling	58
	3.4.2 Advanced LCP machining techniques	59
	3.4.3 LCP air-cavity lid formation	60
	3.4.4 Selective sealing	63
	3.4.5 Evaluating planarity after LCP lid sealing	67
	3.4.6 LCP molding techniques	68
	3.5 Chapter summary References	70
	References	70
4	LCP for wafer-level chip-scale MEMS	72
	4.1 Wafer-level chip-scale packaging of an RF MEMS switch	73
	4.1.1 Packaging steps for LCP-encapsulated RF MEMS	74
	4.1.2 Package electrical design	77
	4.1.3 Package electrical measurements	82
	4.2 Hybrid phase shifter on multilayer organic multi-chip module	83
	4.2.1 Description of processes	85
	4.2.2 Design of a multi-chip module MEMS phase shifter	85
	4.2.3 Packaged phase shifter measurements	89

	Contents	vii
	4.3 Chapter summary References	94 94
_		
5	LCP for surface mount interconnects, packages, and modules	97
	 5.1 Design process for a thin-film LCP surface mount package and feed-through 5.1.1 Via transition 5.1.2 Microstrip line to bond wire transition 5.1.3 Grounded coplanar waveguide (CPWG) below package base 5.1.4 Coplanar waveguide probe launch on test board 5.1.5 Electrical performance sensitivity of package trace thickness 5.1.6 Theoretical attenuation of a package feed-through 5.1.7 Fabrication of LCP package base 5.1.8 Feed-through measurement and model extraction 5.1.9 Insertion loss roll-off beyond 40 GHz 5.1.10 Package isolation measurement 5.1.11 Measurement and simulation of packaged amplifier 5.2 DC blocked coupled-line interconnect 5.2.1 Coupled-line interconnect design 5.2.2 Coupled-line interconnect fabrication and measurement results 5.3 DC blocked lumped-element coupled interconnect 5.3.1 Lumped-element interconnect sensitivity analysis 5.3.2 Lumped-element interconnect measurement results 5.4 Ka-band down-converter multi-chip module (MCM) using LCP SMT packages 5.4.1 Schematic diagram, chip components, and cross-section of module 5.4.2 Design and simulation of signal traces 5.4.3 Assembly and measurement of Ka bond down converter 	98 100 102 105 107 109 111 114 114 117 119 122 122 127 132 136 141 142 142
	 5.4.3 Assembly and measurements of Ka-band down-converter module 5.5 Chapter summary References Appendix Conductor and dielectric attenuation 	147 154 155 156
6	LCP for passive components Hai Ta, Morgan J. Chen, Kunia Aihara, Andy C. Chen, Jia-Chi Samuel Chieh, Anh-Vu H. Pham	160
	 6.1 Broadband LCP Marchand balun 6.1.1 Balun background 6.1.2 Fabrication of and lamination process for the LCP balun 6.1.3 Design and simulation of an LCP balun 6.1.4 Electrical measurements on an LCP balun 	160 161 162 165 167

viii Contents

	6.1.5 Defected ground structure balun	173
	6.1.6 LCP balun summary	177
	6.2 Wilkinson power combiner section	177
	6.2.1 Background and design	178
	6.2.2 Measurement	180
	6.2.3 LCP Wilkinson summary	181
	6.3 Folded broadband LCP hybrid coupler	184
	6.3.1 Design of the hybrid coupler	185
	6.3.2 Measurement results	187
	6.3.3 Hybrid coupler summary	189
	6.4 Chapter summary	190
	References	190
7	LCP for system design	193
	Morgan J. Chen, Kunia Aihara, Andy C. Chen, Jia-Chi Samuel Chieh,	
	Anh-Vu H. Pham	
	7.1 Wideband thin-film amplitude-compensated LTD circuits	
	implementing MEMS switches	193
	7.1.1 LTD design	194
	7.1.2 Fabrication and measurement results	199
	7.1.3 LTD module summary	200
	7.2 Broadband push–pull PA	202
	7.2.1 Push–pull PA design and fabrication	202
	7.2.2 Push–pull PA module measurement without EMMN	203
	7.2.3 Measurement results for a push–pull PA with EMMN	208
	7.2.4 Push–pull PA enabled by LCP summary	209
	7.3 Receiver module with phased-array antenna	210
	7.3.1 Overview of phased-array technology	211
	7.3.2 Antenna design	214
	7.3.3 Passive antenna array design	215
	7.3.4 Active phased-array module	216
	7.3.5 Phased-array antenna receiver module conclusions	223
	7.4 Chapter summary	223
	References	224
8	LCP reliability	226
	8.1 Package vehicle for environmental testing	227
	8.2 Temperature testing	229
	8.2.1 Thermal cycling	229
	8.2.2 Non-operating rapid thermal transition	230
	8.2.3 Non-operating high-temperature storage	231
	8.2.4 Non-operating thermal shock	232

C	Contents		ix	
8	.3 Moist	ture and temperature stressing	233	
	8.3.1	Operating humidity exposure (85 °C/85%)	233	
	8.3.2	Non-operating moisture resistance	234	
	8.3.3	Freeze-expansion stressing	235	
8	.4 Mecha	anical tests	236	
	8.4.1	Non-operating mechanical shock	236	
	8.4.2	Non-operating vibration	237	
8.5 Conclusion		lusions	238	
F	References		240	
A	a 1bbreviatio	ons, acronyms, and symbols	242	
1	ndex		249	

Preface

Package design and fabrication techniques are critical to the high-frequency community. In building improved products, packaging developments are driven by economics, performance, and reliability. For example, the telecom industry as a whole is currently pushing to improve electrical performance and lower cost by replacing the current transceiver designs with new surface mount solutions. This book is intended for electrical engineers involved in designing microwave circuits. As operating frequencies rise with the emergence of high-speed products, engineers will increasingly need a good understanding of RF/microwave packaging.

This book presents engineering breakthroughs in liquid crystal polymer (LCP) applications to microwave-frequency electronics. It appears that LCP is a highly attractive platform to achieve low-cost hermetic devices that offer mechanical flexibility. These benefits are attractive for applications in gigabit wireless communication, radar and imaging systems. Liquid crystal polymer research is currently a very hot topic in microwave engineering, with contributions from several research groups and organizations on a global level.

As we will discuss, using LCP can be challenging at times. The inert chemistry of LCP, which provides its attractive electrical and mechanical properties, can also act to hinder actual circuit build. The book gives brief descriptions of the theory and provides deep insights into the practical issues of design and realization with LCP. Numerous real-world examples with expanded explanations of previously published works are included to create a comprehensive and cohesive volume. We hope to share tips and tricks that we have found for successfully processing LCP for microwave packages and circuit modules. We describe successful techniques in using LCP and how to avoid pitfalls.

In general, very few books on microwave packaging form an interdisciplinary bridge between electrical, mechanical, and chemical expertise. This will be the first book to discuss LCP packaging at the package, component, and system levels. The authors are perhaps uniquely positioned to describe and discuss novel LCP packaging techniques for microwave circuits, since they come from academia, government, and industrial research. All three authors have conducted research from 2003 to the present on advanced microwave packaging using liquid crystal polymer.

xii **Preface**

Book organization

The book is organized bottom-up, beginning with the basics of packaging and a description of LCP's fundamental material properties. Next, techniques for physically processing this new material and LCP packaging techniques for devices are discussed. The book gradually progresses into increasingly complex electrical circuits and designs. Numerous specific examples are provided to cover the wide range of microwave packages and circuits. Specific chapter focuses are described below.

Chapter 1 provides an overview of packaging. It includes a discussion of existing electronic packages, package requirements, and general package design process flow. This chapter is intended to provide a sufficiently broad overview of packaging and high-frequency topics.

In Chapter 2 we describe LCP material properties in terms of chemical, electrical, physical, and environmental properties. The chemistry of LCP is discussed in order to offer the reader a comprehensive material property overview. Then LCP materials are electrically characterized to show their excellent low-loss performance and stable operation under humidity. LCP packages are demonstrated to provide a fine-leak rate of less than 5×10^8 atm cm³/s, which passes the hermetic requirements set by method 1014, Mil-Std-883 [3]. Hence LCP is a viable low-cost option to replace many traditional ceramic packages.

In Chapter 3 we discuss fabrication techniques for processing LCP, including indepth detail on novel techniques. We hope to provide insight and to share techniques that we have used to process LCP. Material formats are introduced, and methods for metallizing laminates are presented. Standard PCB processes compatible with LCP are discussed. Detailed descriptions are also provided for flex laminate PCB processes, including metallization, etching, mechanical and laser via processes, and multilayer lamination. Further, novel processes for LCP are presented. These topics include special handling techniques, bulk LCP machining, selective sealing, and molding processes.

In Chapter 4 we show novel implementations for using LCP in MEMS chip-scale packages (CSPs). We explain how, using new packaging processes, we designed and implemented a two-bit phase shifter with RF MEMS switches in a multilayer organic module. This build employing LCP allows MEMS devices to be hermetically sealed with a Si base, LCP walls, and a Cu roof. Blind vias through LCP form first-level interconnects in this package. An application for these MEMS devices in a two-bit phase shifter circuit is shown as an extension of chip-on-flex (CoF) technology.

In Chapter 5 we describe a variety of feed-through designs for air-cavity surface mount technology (SMT) packages. A return loss greater than 20 dB is demonstrated at Ka-band frequencies for these feed-throughs. Air-cavity SMT packages are characterized using a low-noise amplifier (LNA). Further, a multilayer LCP implementation to create a multi-chip module (MCM-L) receiver front end in an air-cavity SMT package is shown. Novel bandpass filter feed-throughs are also

© in this web service Cambridge University Press

www.cambridge.org

Preface xiii

developed. Bandpass filter designs are presented that give excellent high-frequency interconnection with minimal loss, which allows a DC block to be built directly into the packaging. These research efforts show that it is possible to use low-cost organic hermetic surface mount packages for millimeter-wave frequencies.

Chapter 6 presents LCP for passive components, including implementations for novel wide-band baluns, Wilkinson power combiner—dividers, and hybrid couplers. Many of these devices take advantage of multilayers and thin physical dimensions to achieve breakthrough performance. Our wideband multilayer balun structures make evident how LCP packaging provides an ideal high-density organic module technology with an embedded passive. The balun achieves less than 0.5 dB insertion loss, 0.5 dB amplitude imbalance, and 5° phase imbalance over 6–18 GHz. The broadband Wilkinson offers performance on LCP over 2–18 GHz with 1.6 dB excess insertion loss and 12 dB isolation. A novel, compact, hybrid coupler is demonstrated on multilayer LCP that offers a less than 7° phase imbalance and 15 dB isolation over 2–17 GHz.

In Chapter 7 we discuss LCP packaging for system integration and provide a design for package integration of a true-time delay (TTD) circuit, push–pull power amplifiers (PAs), and a full receiver module with phased-array antennas. Our DC-10 GHz broadband long-time-delay (LTD) circuit provides amplitude compensation over long time variation control from 0 to 600 ps delay in 200 ps increments (two-bit). The LTD is implemented with MEMS switches to provide less than ±0.5 dB amplitude imbalance over all frequencies. Using the broadband LCP baluns described in Chapter 6, a Ku-band push–pull amplifier is presented that achieves 20 dB second-order harmonics reduction over 6–18 GHz. Lastly, a design for a full receiver module that has an integrated phased-array antenna and active devices packaged into a novel LCP platform is given. In this antenna design, LCP is an ideal low-loss material with dimensions suited for microwave propagation.

In Chapter 8 we consider reliability aspects for LCP packaging. Qualification tests and results are provided to demonstrate a high level of robustness under proper process conditions. Typical reliability tests are derived from military and JEDEC standards. Since it passes these stringent life and stress tests, LCP packaging is clearly able to meet the required standards under varying heat, moisture, and temperature conditions.

Acknowledgements

This book has provided an opportunity for us to detail our work in RF/microwave LCP packaging and RF modules. We greatly appreciate the help given by Dr Julie Lancashire, Mia Balashova, and Sarah Finlay from Cambridge University Press, and by Dr Susan Parkinson, our copy-editor, in guiding us to the final text. We also wish to thank our collaborators and sponsors for enabling us to touch and push the boundaries of microwave research.

xiv **Preface**

For additional technical contributions to this book, the authors would like to thank those associated with the University of California, Davis. Former students from the Microwave Microsystems Laboratory include Chris Aldritt, Dr Andy C. Chen, Cheng Chen, Eric Chen, Jia-Chi Samual Chieh, Dr Arvind Keerti, Chi Y. Law, Dr Chao Lu, Dr Mark P. McGrath, Mehmet Onsiper, Cuong Nguyen, Alexander Stameroff, Hai Ta, Yiren Wang, Mary Wu, Junyang Dring Xiang, John Yan, and Zhaonian (Evan) Zhang. We are grateful for their technical contributions, support, and camaraderie. We would like to thank Professor Rick Branner, Professor Jonathan Heritage, Professor David A. Horsley, Professor Saif Islam, Professor Andre Knoeson, and Professor Neville C. Luhmann for their advice and guidance.

Lastly, the authors would like to thank their parents and family members for their continued patience and support.