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This is the second of three volumes that form the Encyclopedia of Special Functions, an

extensive update of the Bateman Manuscript Project.

Volume 2 covers multivariable special functions. When the Bateman project appeared,

study of multivariable special functions was in an early stage, but revolutionary developments

began to be made in the 1980s and have continued ever since. World-renowned experts survey

these over the course of 12 chapters, each containing an extensive bibliography. The reader

encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald

theory, to the various deep generalizations of classical hypergeometric functions to the several

variables case, including the elliptic level. Particular attention is paid to the close relation of

the subject with Lie theory, geometry, mathematical physics and combinatorics.

tom h. koornwinder is Professor Emeritus at the University of Amsterdam. He is an expert

in special functions, orthogonal polynomials and Lie theory. He introduced the five-parameter

extension of the BC-type Macdonald polynomials, which are nowadays called Koornwinder

polynomials. He was co-author of the chapter on orthogonal polynomials in the Digital

Library of Mathematical Functions, and is involved in its revision.
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analytic number theory.
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Preface

This is the second volume of the Encyclopedia of Special Functions of the Askey–Bateman

project. It is devoted to multivariable special functions.

As was explained in the preface to volume 1, the Encyclopedia of Special Functions aims to

realize a vision that the late Richard Askey had in the 1970s: to update the Bateman project,

in particular the three volumes of Higher Transcendental Functions, according to present

knowledge and state of the art. As for multivariable special functions, the Bateman project

contained material on Appell hypergeometric functions (part of Chapter V) and orthogonal

polynomials in several variables (Chapter XII). These two most classical parts of multivariable

special functions are treated in the present volume in Chapters 3 and 2, respectively.

In the past 65 years, since the Bateman project appeared, multivariable orthogonal poly-

nomials and special functions have seen several revolutionary developments which partially

interacted with each other and which also were fed by new insights into one-variable the-

ory (notably basic and elliptic hypergeometric functions, and Askey–Wilson polynomials).

One development was the successive introduction of zonal polynomials, hypergeometric func-

tions of matrix argument, Jack polynomials, Hall–Littlewood polynomials, Heckman–Opdam

polynomials (Chapter 8), Macdonald polynomials and Koornwinder’s extension of Macdon-

ald’s BC case (Chapter 9), and Rains’ elliptic generalization of the Koornwinder polynomi-

als (Chapter 6). Dunkl’s simultaneous introduction of the Dunkl operator (Chapter 7) and,

a little later, Cherednik’s double affine Hecke algebras (Chapter 9) gave important boosts to

these theories. Macdonald theory was also in fruitful interaction with algebraic combinatorics

(Chapter 10). Analysis on semisimple Lie groups (Chapter 8) and quantum groups was also

an important inspiration.

A second line of development was the quest for multivariable analogues of hypergeometric

functions (which should be deep enough that many one-variable formulas generalize). The

Appell hypergeometric functions turned out to be special cases of the A-hypergeometric func-

tions (Chapter 4), introduced by Gel’fand and coworkers. Work by, among others, Biedenharn

and coworkers resulted in many classes of multivariable hypergeometric series with expansion

coefficients patterned by root systems; see Chapter 5 for the classical and basic cases, and

Chapter 6 for the elliptic case. A very different kind of hypergeometric function associated

with root systems, generalizing the theory of spherical functions on noncompact Riemannian

symmetric spaces, was developed by Heckman and Opdam (Chapter 8). Yet another source of
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xii Preface

multivariable hypergeometric functions, also closely connected with conformal field theory,

comes from solving Knizhnik–Zamolodchikov-type equations (Chapter 11).

Wigner and Racah coefficients in the representation theory of SU(n) and their application to

quantum mechanics were the historical context from which the theory on multivariable hyper-

geometric series described in Chapter 5 arose. The case of SU(2) is described in Chapter 12.

Here the 9 j-coefficients give rise to still mysterious orthogonal polynomials in two variables.

A more detailed survey of the chapters and their interconnections is given in the introduc-

tory Chapter 1.

We hope that the volume will help the reader to oversee the global landscape of multi-

variable special functions and their applications, and will serve as a useful guide to the ex-

tensive literature. We are very grateful to the authors of the chapters for their contributions to

this volume. The final editing of the individual chapters and the creation of the index to the

volume was done by the first editor.

Tom H. Koornwinder and Jasper V. Stokman
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