
Cambridge University Press
978-1-107-00373-6 — Encyclopedia of Special Functions: The Askey-Bateman Project
Edited by Tom H. Koornwinder , Jasper V. Stokman 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

General Overview of Multivariable Special Functions

Tom H. Koornwinder and Jasper V. Stokman

1.1 Introduction

The theory of one-variable (ordinary) hypergeometric and basic hypergeometric series goes

back to work of Euler, Gauss and Jacobi. The theory of elliptic hypergeometric series is of

a much more recent vintage (Frenkel and Turaev, 1997). The three theories deal with the

study of series
∑

k≥0 ck with f (k) := ck+1/ck a rational function in k (hypergeometric theory),

a rational function in qk (basic hypergeometric theory) or a doubly periodic meromorphic

function in k (elliptic hypergeometric theory; see Gasper and Rahman, 2004, Ch. 11 for an

overview).

Examples of elementary functions admitting hypergeometric and basic hypergeometric se-

ries representations are

(1 − z)−α =

∞
∑

k=0

(α)k

k!
zk,

(az; q)∞

(z; q)∞
=

∞
∑

k=0

(a; q)k

(q; q)k

zk (1.1.1)

for |z| < 1 and α, a ∈ C, with (α)k := α(α+1) · · · (α+k−1) for k ∈ Z≥0 the shifted factorial (or

Pochhammer symbol), (a; q)k := (1 − a)(1 − qa) · · · (1 − qk−1a) for k ∈ Z≥0 ∪ {∞} the q-shifted

factorial. Here, and throughout the entire chapter, we assume for convenience that 0 < q < 1.

Note that the series in the second identity, with a = qα, tends to the series in the first identity

as q ↑ 1, at least formally, and that the identities (1.1.1) reduce to polynomial identities when

α ∈ Z≤0. Also note that the series in (1.1.1) are indeed hypergeometric and basic hyperge-

ometric series, respectively, since f (k) = k+α
k+1

z and f (k) =
1−qka

1−qk+1 z for the first and second

series in (1.1.1). These are the well-known Newton (generalized) binomial theorem and its

q-analogue (Gasper and Rahman, 2004, §1.3). They form, apart from the (q-)exponential se-

ries, the simplest nontrivial examples of an impressive scheme of hypergeometric and basic

hypergeometric summation identities (Gasper and Rahman, 2004), with the members in the

scheme related by limit transitions.

The summands of elliptic, basic and classical hypergeometric series are expressible in terms

of products and quotients of elliptic, basic and classical shifted factorials. The basic and clas-

sical ones are the (q-)shifted factorials as defined in the previous paragraph. The elliptic (or

theta) shifted factorial is given by (z; q, p)k :=
∏k−1

i=0 θ(zqi; p) for k ∈ Z≥0 and 0 < p < 1,

with θ(z; p) :=
∏∞

i=0(1 − piz)(1 − pi+1/z) the modified theta function. These shifted factorials
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can be expressed as Γ(qkz)/Γ(z) (or, in the classical case, Γ(z + k)/Γ(z)) with Γ(z) an appro-

priate analogue of the classical Gamma function. For the elliptic hypergeometric case this is

Ruijsenaars’ (1997) elliptic Gamma function

∞
∏

i, j=0

1 − z−1 pi+1q j+1

1 − zpiq j
, 0 < p, q < 1,

for the basic hypergeometric case the (modified) q-Gamma function (z; q)−1
∞ and for the clas-

sical hypergeometric case the classical Gamma function.

There is no “simple” elliptic analogue of (1.1.1). In fact, the first elliptic hypergeometric

summation formula that was found (Frenkel and Turaev, 1997) generalizes the top-level ter-

minating (basic) hypergeometric summation identity! This is a general pattern for the elliptic

hypergeometric theory: the top levels of the (basic) hypergeometric theory admit elliptic ver-

sions, and there is little room for degenerations without falling outside the realm of elliptic

hypergeometric series. Possibly this is one of the reasons for the late discovery of elliptic

hypergeometric series.

Parallel to the theory of hypergeometric series there is a theory of hypergeometric inte-

grals; see §1.2.3 and, in later chapters, §5.3 and §6.2. Such integrals can often be identi-

fied with hypergeometric series. But, certainly in the elliptic case, there are many instances

where the hypergeometric integral is convergent while a possible corresponding hypergeo-

metric series diverges (Rosengren, 2017, §2.10). Hypergeometric integrals naturally appear

as coordinates of vector-valued solutions of Knizhnik–Zamolodchikov (KZ) and Knizhnik–

Zamolodchikov–Bernard (KZB) equations and their q-analogues; see Chapter 11. The elliptic

case, corresponding to solutions of qKZB equations, appeared in Felder et al. (1997, §7) (yet

formally) and soon afterwards rigorously in Felder et al. (1999, §6).

This volume deals with multivariable generalizations of ordinary, basic and elliptic hy-

pergeometric series and integrals. This includes various multivariable extensions of classical

(bi)orthogonal polynomials and functions, which form an important subclass of hypergeomet-

ric series within the one-variable theory.

Various multivariable theories have emerged, each with its own characteristic features de-

pending on the particular motivation for, and context behind, its multivariable extension. For

instance, there are important multivariable theories motivated by special function theory itself

(see Chapters 2–6), by representation theory and Lie theory (see Chapters 7–9 and 12), by

combinatorics (see Chapter 10) and by theoretical physics (see Chapters 8–9 and 11–12).

In the remainder of this introductory chapter we give a short discussion of each of the types

of multivariable special functions treated in this volume, and we highlight their interrelations

and differences. In §1.2 we first discuss the multivariable series which may be seen as ex-

tensions of the three types of hypergeometric series. The different classes of multivariable

extensions of classical (bi)orthogonal functions will be discussed in §1.3.

We hope that this short impression of the various classes of multivariable special functions

and their interrelations helps the reader to oversee the chapters in this volume and how they

are related.

www.cambridge.org/9781107003736
www.cambridge.org


Cambridge University Press
978-1-107-00373-6 — Encyclopedia of Special Functions: The Askey-Bateman Project
Edited by Tom H. Koornwinder , Jasper V. Stokman 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

General Overview 3

1.2 Multivariable Classical, Basic and Elliptic Hypergeometric Series

1.2.1 Appell and Lauricella Hypergeometric Series

Gauss’ hypergeometric series is given by

2F1

(

a, b

c
; x

)

:=

∞
∑

k=0

(a)k(b)k

(c)kk!
xk, (1.2.1)

which absolutely converges for |x| < 1. One of the oldest generalizations of the Gauss hy-

pergeometric series to several variables was given by Appell, who introduced the four Appell

hypergeometric series in two variables (see Appell and Kampé de Fériet, 1926; Erdélyi, 1953,

§5.7), denoted by F1, F2, F3, F4. For instance,

F2(a, b1, b2, c1, c2; x, y) :=

∞
∑

m,n=0

(a)m+n(b1)m(b2)n

(c1)m(c2)n m!n!
xmyn, (x, y) ∈ C2, |x| + |y| < 1. (1.2.2)

The series (1.2.2) are double series
∑∞

m,n=0 cm,n/(m!n!) with cm+1,n/cm,n and cm,n+1/cm,n of the

form p1(m, n)/r1(m, n) and p2(m, n)/r2(m, n) for suitable relative prime polynomials pi and ri

in two variables (i = 1, 2). This extends the property characterizing hypergeometric series in

one variable, and such series are therefore also called hypergeometric. The highest degree of

the four polynomials p1, r1, p2, r2 is called the order of the hypergeometric series in two vari-

ables. The Appell hypergeometric series have order two. Horn classified all hypergeometric

series of order two; see the list of 34 series in Erdélyi (1953, §5.7.1). Lauricella defined n-

variable analogues FA, FB, FC , FD of F2, F3, F4, F1, respectively. The Appell and Lauricella

hypergeometric series are discussed in Chapter 3.

Many properties and formulas for Gauss hypergeometric series generalize to Appell and

Lauricella hypergeometric series, but, not surprisingly, one has to deal with interesting com-

plications concerning, for instance, the integral representations, systems of partial differential

equations and monodromy; see Chapter 3. Furthermore, solutions of the system of partial dif-

ferential equations for these series form a much richer collection than in the case of the Gauss

hypergeometric series, where all local solutions at regular singularities are expressed in terms

of series of the same type. For instance, for F2 six different types of series occur as local

solutions, including some that are hypergeometric series of order higher than two, or even not

hypergeometric series at all; see Olsson (1977). Gel’fand’s A-hypergeometric functions (see

Chapter 4) offer a fruitful point of view for the study of Appell and Lauricella hypergeometric

series. This can also give inspiration for a study of q-analogues; see Noumi (1992), where also

a connection is made with quantum groups. Gasper and Rahman (2004, Chapter 10) give an

account of q-series in two or more variables.

Appell and Lauricella hypergeometric series have several interrelations with other special

functions in several variables. The first example (which may have been the motivating ex-

ample for Appell) is the biorthogonal polynomials on the simplex and ball; see Chapter 2.

Further examples deal with Heckman–Opdam hypergeometric functions (see Chapter 8). In

the case of root system A, these functions can be identified for certain degenerate parame-

ter values with a special Lauricella FD (or, in two variables, with Appell F1); see Shimeno
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and Tamaoka (2015). A special case of Heckman–Opdam hypergeometric functions for root

system BC2 can be written as the sum of two Appell F4 functions (see Beerends, 1992, The-

orems 3.3 and 2.3). In the polynomial case one of the F4 terms vanishes, so that special BC2

Jacobi polynomials can be written as a terminating F4; see Koornwinder and Sprinkhuizen-

Kuyper (1978, (7.15)). Another special case of the Heckman–Opdam functions for BCn, now

for general n, can be expressed as n-variable analogues of Kampé de Fériet hypergeometric

series, certain hypergeometric series in two variables of order three (Beerends, 1992, (5.1)

and Theorem 5.4).

1.2.2 A-Hypergeometric Functions

The A-hypergeometric (or GKZ hypergeometric) functions were introduced by Gel’fand et al.

(1989), but there have been analogous approaches before. In particular, Miller Jr. (1973) de-

scribed a new approach to the hypergeometric differential equation

z(1 − z) f ′′(z) +
(

c − (a + b + 1)z
)

f ′(z) − ab f (z) = 0, (1.2.3)

of which the Gauss hypergeometric series (1.2.1) is a solution. He observed that if the param-

eters a, b, c in (1.2.3) are replaced by s∂s, u∂u, t∂t, then the resulting system of PDEs

QF = 0, s∂sF = aF, u∂uF = bF, t∂tF = cF (1.2.4)

with

Q := z(1 − z)∂zz + t∂tz − z(s∂sz + u∂uz + ∂z) − su∂su

has a solution

F(s, u, t, z) = saubtc
2F1

(

a, b

c
; z

)

. (1.2.5)

Miller defines the dynamical symmetry algebra G of Q as the set of all first-order PDEs L such

that QL f = 0 whenever Q f = 0. It is a Lie algebra with a basis of operators acting on solutions

of the form (1.2.5) (so-called contiguity relations). Then G is seen to be isomorphic to sl(4).

Miller Jr. (1973) pointed out that a similar approach works for generalized hypergeometric

series r+1Fr and for Appell and Lauricella hypergeometric series. This was elaborated on by

him in several papers in 1972, 1973.

Kalnins et al. (1980) transformed systems like (1.2.4), in the case of Appell’s and Horn’s

hypergeometric series in two variables, into so-called canonical systems. These systems co-

incide with special cases of the later-introduced A-hypergeometric systems (Gel’fand et al.,

1989). M. Saito (1996, 2001) recognized the relevance of Kalnins et al. (1980) for the GKZ

theory. He also worked with a symmetry algebra for operators Q which no longer requires

that the operators in the algebra are first order.

A change of variables turns system (1.2.4) of PDEs into the following canonical (or A-

hypergeometric) form:

(∂xy − ∂zw) f = 0, (x∂x − y∂y) f = (1 − c) f , (x∂x + z∂z) f = −a f , (x∂x + w∂w) f = −b f ,

(1.2.6)
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with corresponding solution

f (x, y, z,w) = y c−1z−aw−b
2F1

(

a, b

c
;

xy

zw

)

; (1.2.7)

see for instance Stienstra (2007, §2.6, §3.2.1). Note that the change of variables has trans-

formed the second-order partial differential operator Q to ∂xy − ∂zw, which is essentially the

four-dimensional Laplace operator. This makes it manifest that the dynamical symmetry al-

gebra of Q is sl(4); see also Dereziński and Majewski (2016).

The general A-hypergeometric system in n variables x = (x1, . . . , xn) depends on a d × n

matrix A = (ai j) = (a1 . . . an) with integer column vectors a j ∈ Z
d (from which the A in

A-hypergeometric) such that the Z-span of the a j equals Zd. The A-hypergeometric system,

depending on parameters β1, . . . , βd, is given by

(

∏

ui>0

∂ui
xi

)

f =

(

∏

ui<0

∂−ui
xi

)

f (u ∈ L\{0}),

( n
∑

j=1

ai jx j∂x j

)

f = βi f (i = 1, . . . , d) (1.2.8)

with L := {u ∈ Zn | Au = 0}. It can be seen to have system (1.2.6) as the special case

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0 0

1 0 1 0

1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, β = (1 − c,−a,−b)t. (1.2.9)

For ν ∈ Cn such that Aν = β, we have a formal solution of the (ν-independent) differential

equations (1.2.8) given by the series

∑

u∈L

n
∏

j=1

x
ν j+u j

j

Γ(ν j + u j + 1)
, (1.2.10)

called A-hypergeometric series in Gamma function form. With the choice (1.2.9) of A, β and

with ν := (0, c − 1,−a,−b)t, u := k(1, 1,−1,−1)t (k ∈ Z) the series (1.2.10) becomes

∞
∑

k=−∞

x k
1

x c−1+k
2

x−a−k
3

x−b−k
4

Γ(k + 1)Γ(c + k)Γ(−a − k + 1)Γ(−b − k + 1)

=
x c−1

2
x−a

3
x−b

4

Γ(c)Γ(1 − a)Γ(1 − b)

∞
∑

k=0

(a)k(b)k

(c)k k!

(

x1x2

x3x4

)k

,

which is (1.2.7) apart from the Gamma factors in the denominator in front of the summation.

Choices for A and ν in (1.2.10) can be made such that the resulting series involves r+1Fr(z)

or an Appell or Lauricella hypergeometric series. For instance, for Appell’s F2 one can take

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 1 1

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 −1 0

0 0 0 0 1 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

β = (−a,−b1,−b2, c1 − 1, c2 − 1)t,

u = m(−1,−1, 0, 1, 0, 1, 0) + n(−1, 0,−1, 0, 1, 0, 1)t,

ν = (−a,−b1,−b2, c1 − 1, c2 − 1, 0, 0)t.
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Then the first part of system (1.2.8) is generated by ∂1∂2 f = ∂4∂6 f , ∂1∂3 f = ∂5∂7 f , and

(1.2.10) becomes

∞
∑

m,n=−∞

x−a−m−n
1

x
−b1−m

2
x
−b2−n

3
x

c1+m−1

4
x

c2+n−1

5
x m

6
x n

7

Γ(m + 1)Γ(n + 1)Γ(c1 + m)Γ(c2 + n)Γ(1 − a − m − n)Γ(1 − b1 − m)Γ(1 − b2 − n)

=
x−a

1
x
−b1

2
x
−b2

3
x

c1−1

4
x

c2−1

5

Γ(c1)Γ(c2)Γ(1 − a)Γ(1 − b1)Γ(1 − b2)
F2

(

a, b1, b2, c1, c2;
x4x6

x1x2

,
x5x7

x1x3

)

.

The GKZ theory, of which Chapter 4 gives a survey, not only unifies the study of many

classes of multivariable special functions, but also exploits methods from algebra, geometry,

D-module theory and combinatorics, far beyond the methods used in classical approaches.

1.2.3 Classical, Basic and Elliptic Hypergeometric Series and Integrals

Associated with Root Systems

Hypergeometric integrals of classical, basic and elliptic type are integrals with integrand ex-

pressed in terms of products and quotients of Gamma factors Γ(ax) (in the classical case,

Γ(a + x)), with Γ(x) the Gamma function of the appropriate type. In the classical case in-

tegrands involving products of the form (1 − x)a are also considered to be hypergeometric

((1 − x)a is formally the q → 1 limit of the quotient (qx; q)∞/(q
a+x; q)∞ of q-Gamma func-

tions). The singular set of the integrand of a hypergeometric integral is a union of geometric

(in the classical case, arithmetic) progressions. Hypergeometric series naturally arise as the

sum of residues of the integrand over such pole progressions.

Multidimensional hypergeometric integrals typically arise in contexts involving representa-

tion theory of algebraic and Lie groups. For instance, in harmonic analysis on compact sym-

metric spaces, the zonal spherical functions give rise to a family of multivariable orthogonal

polynomials with respect to a measure on a compact torus that is absolutely continuous with

respect to the Haar measure. The associated weight function admits a natural factorization in

terms of the root system underlying the symmetric space. Such multivariable integrals often

admit generalizations beyond the representation-theoretic context. They provide the prototyp-

ical examples of hypergeometric integrals associated with root systems.

Let us focus now more closely on the structure of such integrals. Suppose R is an irreducible

root system in Rn, and fix a choice R+ of positive roots. The co-weight lattice P∨ of R is

the lattice in Rn dual to the Z-span of R. For the classical root systems we take the usual

realization of R = R+ ∪ (−R+) in Rn with respect to the standard orthonormal basis {ei}
n
i=1

of Rn. Concretely, R+ = {ei − e j}1≤i< j≤n for type An−1, R+ = {ei ± e j}1≤i< j≤n for type Dn,

R+ = {ei ± e j}1≤i< j≤n ∪ {2ei}
n
i=1

for type Cn and R+ = {ei ± e j}1≤i< j≤n ∪ {ei, 2ei}
n
i=1

for type BCn.

Let kα ∈ C be parameters that depend only on the Weyl group orbit of the root α ∈ R

(equivalently, kα depends only on the root length ‖α‖ of the root α ∈ R). The prototypical

example of a classical hypergeometric integral associated with R is
∫

AR

wk(x) dx, wk(x) :=
∏

α∈R

(

1 − e2πi(α,x))kα (1.2.11)

www.cambridge.org/9781107003736
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with AR ⊂ R
n a fundamental domain for the translation action of P∨ on Rn, x = (x1, . . . , xn),

dx = dx1 · · · dxn and k := {kα}α∈R the collection of the parameters kα (here the kα should

satisfy appropriate conditions to ensure convergence of the integral). Remarkably the integral

(1.2.11) admits an explicit evaluation as a product of Gamma functions. The resulting identity

is known as the Macdonald constant term identity (see Theorem 8.4.2(i)). It gives the volume

of the orthogonality measure of root system generalizations of the Jacobi polynomials, also

known nowadays as Heckman–Opdam polynomials; see Chapter 8 for a detailed discussion.

Of particular interest is the special case that the root system R is of type BCn. In that case

the Macdonald constant term identity reduces after the change of variables z j = sin2(πx j) to

the well-known Selberg integral (Selberg, 1944)

∫

[0,1]n

n
∏

i=1

zα−1
i (1 − zi)

β−1
∏

1≤i< j≤n

|zi − z j|
2γ dz =

n−1
∏

j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + ( j + 1)γ)

Γ(α + β + (n + j − 1)γ)Γ(1 + γ)

with parameters α = kǫ1 + k2ǫ1 +
1
2
, β = k2ǫ1 +

1
2

and γ = kǫ1−ǫ2 , which in turn is a multidimen-

sional generalization of the beta integral. There are many applications of the Selberg integral,

for instance in the theory of integrable systems (Chapters 8 and 9), in conformal field theory

(Chapter 11) and in random matrix theory; see the overview article by Forrester and Warnaar

(2008).

For basic hypergeometric integrals associated with root systems a similar story applies.

The roles of Lie groups and root systems are taken over by quantum groups and affine root

systems, although this time the representation-theoretic context came later. The affine root

system associated to an irreducible reduced root system R is denoted by R(1) and consists of

the collection of affine linear functionals a : Rn → R of the form a(x) = (α, x)+m (with α ∈ R

and m ∈ Z). The role of wk(x) is now taken over by

wk,q(x) =
∏

a∈R(1); a(0)≥0

(

1 − qa(x)

1 − qka+a(x)

)

=

∏

α∈R

(q(α,x); qα)∞

(qkα+(α,x); qα)∞
,

where ka = kα if α is the gradient of a ∈ R(1). Macdonald (1982) conjectured an explicit

evaluation for the basic hypergeometric integral

∫

AR

wk,q(x/τ) dx, q = exp(2πiτ) (1.2.12)

associated with R, which was proved in full generality by Cherednik (1995) using the theory

of double affine Hecke algebras. The evaluation formula gives the volume of the orthogonality

measure of the Macdonald polynomials; see Chapter 9. The integral (1.2.12) and its evaluation

generalize to arbitrary (possibly nonreduced) irreducible affine root systems and with milder

equivariance conditions on k = {ka}a∈R(1) . In the case of the nonreduced affine root system of

type C∨Cn, this leads to the multivariable analogue of the Askey–Wilson integral (Gustafson,

1990) which depends, apart from q, on five additional parameters. It gives the volume of the

orthogonality measure of the Koornwinder polynomials; see Chapter 9.
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A very general elliptic analogue of the Selberg integral and of Gustafson’s multivariable

analogue of the Askey–Wilson integral was conjectured by van Diejen and Spiridonov (2001,

Theorem 4.2) and proved by Rains (2010, Theorem 6.1):

1

(2πi)n

∫

T n

∏

1≤i< j≤n

Γ(tziz j, tziz
−1
j
, tz−1

i
z j, tz

−1
i

z−1
j

)

Γ(ziz j, ziz
−1
j
, z−1

i
z j, z

−1
i

z−1
j

)

n
∏

k=1

∏6
i=1 Γ(tizk, tiz

−1
k

)

Γ(z2
k
, z−2

k
)

dz1

z1

· · ·
dzn

zn

=
2nn!

(p; p)n
∞(q; q)n

∞

n
∏

m=1

(

Γ(tm)

Γ(t)

∏

1≤i< j≤6

Γ(tm−1tit j)

)

,

(1.2.13)

with T the positively oriented unit circle in the complex plane, Γ(x1, . . . , xr) := Γ(x1) · · · Γ(xr)

a product of elliptic Gamma functions Γ(xi), and parameters t, ti ∈ C satisfying |t|, |ti| < 1 and

t2n−2t1 · · · t6 = pq. The integral (1.2.13) is an example of an elliptic hypergeometric integral

associated with the root system of type Cn. For n = 1 it reduces to Spiridonov’s elliptic beta

integral (Spiridonov and Zhedanov, 2000). It is a special case of a family of transformation

formulas that relate elliptic hypergeometric integrals associated with type-C root systems of

different ranks (van de Bult, 2009). The basic analogue of (1.2.13) is a multivariable analogue

of the Nassrallah–Rahman integral (Nassrallah and Rahman, 1985),

1

2πi

∫

T

(

z2, z−2, Az, Az−1; q
)

∞
∏5

j=1

(

t jz, t jz−1; q
)

∞

dz

z
=

2
∏5

j=1

(

At−1
j

; q
)

∞
(

q; q
)

∞

∏

1≤ j<k≤5

(

t jtk; q
)

∞

, |t j| < 1 (1.2.14)

where A := t1t2t3t4t5 and
(

a1, . . . , ar; q
)

∞ :=
∏r

i=1

(

ai; q
)

∞. Just as (1.2.14) gives the Askey–

Wilson integral for t5 = 0, its multivariable analogue yields Gustafson’s (1990) integral by

the same substitution. The identity (1.2.13) and some of its degenerations give the volumes of

(bi)orthogonality measures for important families of multivariable (bi)orthogonal functions;

see §1.4.

The multivariable elliptic integrals appearing in Felder et al. (1997, 1999) as coordinates

of vector-valued solutions of qKZB equations are associated with the root system of type

An. Their semiclassical limits, which provide solutions of the KZB equation, as well as their

degenerations to the basic and classical hypergeometric level, are discussed in Chapter 11.

A further rough division of hypergeometric integrals associated with root systems involves

the notion of types. Multidimensional integrals are said to be type-II basic (resp. elliptic)

hypergeometric integrals associated with the root system R if the integrand contains a factor of

the form
∏

α∈R

(

Γ(q(α,x))/Γ(qkα+(α,x))
)

with Γ(x) the basic (resp. elliptic) Gamma function. It is

called type I if it contains a factor of the form
∏

α∈R Γ(q
(α,x))−1. Similarly, a multidimensional

integral is said to be a type-II classical hypergeometric integral associated with the root system

R if the integrand contains a factor of the form ∆k(x) or
∏

α∈R

(

Γ(α, x)/Γ(kα + (α, x))
)

, with

Γ(x) the classical Gamma function (and a similar adjustment for type I). The examples of

multidimensional integral evaluations highlighted so far are type II. In Chapters 5 and 6 many

examples of type-I and type-II multidimensional integral evaluations and transformations are

discussed. Note that there are also hypergeometric integrals of mixed type; see (6.2.3) for an

example.
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Next we turn our attention to multivariable hypergeometric series. For a given root system

R, we can define a Weyl-type denominator by

∆(x) :=
∏

α∈R+

h
(

(α, x)
)

with h(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

z (classical hypergeometric type),

1 − qz (basic hypergeometric type),

θ(z; p) (elliptic hypergeometric type).

In the basic hypergeometric case ∆(x) is the Weyl denominator of the semisimple Lie algebra

associated with R, while in the elliptic case ∆(x) is closely related to the Weyl denominator of

the affine Lie algebra associated with R(1); see §6.1.2.

Multivariable classical, basic and elliptic hypergeometric series
∑

k∈D f (k) (D ⊆ Zn) are

said to be associated with the classical root system R if f (k) contains the factor ∆(y + k) for

some fixed y ∈ Cn in a nontrivial way. First examples of multivariable classical hypergeomet-

ric series identities appeared in the work of Holman et al. (1976) on 6 j-symbols for SU(n)

(the associated root system is of type A). An important nontrivial example of a multivariable

basic hypergeometric series identity is the fundamental theorem of Milne (1985):

∑

k∈DN

∆(y + k)

n
∏

ℓ=1

q(ℓ−1)kℓ

n
∏

i, j=1

(

qβi+y j−yi ; q
)

k j

(

q1+y j−yi ; q
)

k j

=

(

qβ1+···+βn ; q
)

N
(

q; q
)

N

∆(y)

with DN :=
{

k ∈ Zn
≥0
| k1 + · · · + kn = N

}

and ∆(x) =
∏

1≤i< j≤n(1 − qxi−x j ) the Weyl-

type denominator for the root system R of type An−1. An elliptic generalization is the elliptic

Jackson summation formula (6.3.1a) due to Rosengren (2004, Theorem 5.1).

For classical root systems, identities and transformations for multivariable hypergeomet-

ric series naturally arise from related multidimensional hypergeometric integral identities and

transformations through residue calculus. In this process, the Weyl denominator ∆(k) arises

from the integrands of the multidimensional hypergeometric integrals through the formula

(6.1.3). The residue calculus typically involves iterated small contour deformations per coor-

dinate, avoiding at each step the poles of the factors of the integrand that do not depend on a

single coordinate x j. This technique was developed in Stokman (2000), where it was applied

to type-II basic hypergeometric integrals associated with Koornwinder polynomials. When

applied to the elliptic Selberg integral (1.2.13) one obtains a type-C elliptic hypergeometric

series identity (see (6.3.6)) that reduces for n = 1 to the Frenkel–Turaev elliptic summation

formula (Frenkel and Turaev, 1997):

N
∑

m=0

θ(aq2m; p)

θ(a; p)

(a, b, c, d, e, q−N ; q, p)m

(q, aq/b, aq/c, aq/d, aq/e, aq1+N ; q, p)m

qm

=
(aq, aq/bc, aq/bd, aq/cd; q, p)N

(aq/b, aq/c, aq/d, aq/bcd; q, p)N

(1.2.15)

for bcde = a2qN+1, where (x1, . . . , xr; q, p)m =
∏r

i=1(xi; q, p)m. In this way, many of the hy-

pergeometric series identities and transformations associated with classical root systems as

discussed in Chapter 5 (classical and basic hypergeometric) and in Chapter 6 (elliptic hyper-

geometric) can be viewed as discrete versions of multidimensional hypergeometric integrals.
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1.3 Multivariable (Bi)Orthogonal Polynomials and Functions

1.3.1 One-Variable Cases

The class of one-variable (bi)orthogonal polynomials and functions splits up into various nat-

ural subclasses, each subclass having its distinct features that are vital for the construction and

study of its multivariable generalization.

(a) General theory of orthogonal polynomials (Szegő, 1975)

(b) Classical orthogonal polynomials

(c) Classical biorthogonal rational functions

(d) Bessel functions (Olver et al., 2010, §10.22(v)) and Jacobi functions (Koornwinder,

1984)

By classical orthogonal polynomials we mean (more generally than in Chapter 2) the one-

variable orthogonal polynomials belonging to the Askey or q-Askey scheme (Koekoek et al.,

2010, Chs. 9, 14). They are characterized as the orthogonal polynomials that are joint eigen-

functions of a suitable type of second-order differential or (q-)difference operator. The cor-

responding classification results are called (generalized) Bochner theorems (Grünbaum and

Haine, 1996; Ismail, 2003; Vinet and Zhedanov, 2008). Prominent members are the Jacobi

polynomials (Szegő, 1975, Ch. IV) and their top-level q-analogues, the Askey–Wilson poly-

nomials (Askey and Wilson, 1985). By classical biorthogonal rational functions we refer

to the generalizations of classical orthogonal polynomials due to Rahman (1986, 1991) and

Wilson (1991), and their elliptic analogues due to Spiridonov and Zhedanov (2000).

Classical orthogonal polynomials and biorthogonal rational functions are expressible as

ordinary, basic and elliptic hypergeometric series. The various classes admit (bi)orthogonality

relations with respect to explicit measures whose total masses are the outcome of important

integral evaluation formulas. For example, for the classical Jacobi polynomials the integral

evaluation is the beta integral

∫ 1

−1

(1 − x)α(1 + x)β dx =
2α+β+1

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
, α, β > −1,

with Γ(x) the classical Gamma function, for Rahman’s (1986) biorthogonal basic hypergeo-

metric rational functions it is the Nassrallah–Rahman integral (1.2.14) and for Spiridonov–

Zhedanov’s (2000) elliptic biorthogonal rational functions it is Spiridonov’s (2001) elliptic

beta integral (the n = 1 case of (1.2.13)).

1.3.2 Multivariable Generalizations

The subclasses (a)–(d) of one-variable (bi)orthogonal polynomials and functions generalize

to the multivariable case as follows. Note that the one-variable subclass (b) generalizes to two

subclasses (b1) and (b2).

(a) General theory of multivariable orthogonal polynomials with respect to orthogonality

measures on Rd (Dunkl and Xu, 2014). This is discussed in Chapter 2.

(b1) Multivariable orthogonal polynomials expressible as (nonstraightforward) products of

one-variable classical orthogonal polynomials and elementary polynomials; see
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