Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt
More information

1

Binomial pricer

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Program shell
Entering data
Functions

Separate compilation
CRR pricer

Pointers

Function pointers
Taking stock

In the binomial model the prices of assets evolve in discrete time steps
n=20,1,2,.... There is a stock whose price evolves randomly by moving
up by a factor 1 + U or down by 1 + D independently at each time step,
starting from the spot price S (0). As a result, the stock price becomes

S(n,i)=SO)1+ U1 +D)""

at step n and node i in the binomial tree

i=3
i=2 <

i=1 < i=2
i=1 <

i=0 < i=1
i=0 <

i=0

n=1 n=2 n=3

1

7N\ VA 7N

VA

(1.1)

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

2 Binomial pricer

where S(0) > 0, U > D > —1 and n > i > 0. There is also a risk-free
security, a money market account, growing by a factor 1 + R > 0 during
each time step. The model admits no arbitrage whenever D < R < U.

Within the binomial model the price H(n,i) at each time step n and
node i of a European option with expiry date N and payoff A(S(N)) can
be computed using the Cox—Ross—Rubinstein (CRR) procedure, which
proceeds by backward induction:

o At the expiry date N

H(N, i) = h(S (N, 1)) (1.2)
foreachnodei=0,1,...,N.
e If H(n + 1,i) is already known at eachnode i = 0, 1,...,n + 1 for some

n=0,...,N—1, then
gHn+1,i+ 1)+ (1 —gHn+ 1,i)

H(n,i) = 1.3
(n,1) Y (1.3)
foreachi=0,1,...,n.
Here
_R—D
1=U-D

is the risk-neutral probability. In particular, for a call option the payoff
function is

call _ z-K ifz>K, (o _
@) _{ 0 otherwise. (2= K)

and for a put option it is

K-z ifz<K
put _ ’ — G
W) = { 0 otherwise. (K-2)

for all z > 0, where K is the strike price. For more details on pricing
European options in the binomial model, see [DMFM].

We are going to develop a simple binomial pricer based on these for-
mulae, working through a number of versions of the code, and adding new
features at each step.

1.1 Program shell

We start with an almost empty shell that does just one thing: it displays a
brief message on the screen and pauses so that the user can read it.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

1.1 Program shell 3

Listing 1.1 MainO1.cpp

#include <iostream>
using namespace std;

int main()
{
//display message
cout << "Hi there" << endl;

//pause program
char x; cin >> x;

return 0;

Let us examine this code line by line.

© #include <iostream>
tells the compiler to locate and read the header file iostream.h and to
include its contents in the program. This header file is part of the stan-
dard library and handles input—output operations. It is needed here
because we want to display a message on the screen.

©® Namespaces prevent inadvertent name clashes and help to group re-
lated names together. All names in the standard C++ library are wrapped
in a single namespace std. The line
using namespace std;
makes this namespace available throughout the file. Without it we would
have to tell the compiler explicitly that cout, endl, cin belong to the
namespace by writing them as std: :cout, std: :endl, std: :cin.
(Try it!)

©® int main()
is the entry point for the C++ program, which starts by executing the
first line enclosed within the curly brackets { and }. Every C++ pro-
gram must contain exactly one such entry point.

© The lines starting with // are comments. When // is encountered any-
where in a line of code, everything to the right of // in that line is
ignored by the C++ compiler.

© When the line of code

cout << "Hi there" << endl;
is executed, the output operator << sends the text enclosed in

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

4 Binomial pricer

quotation marks to the standard output cout, which in the majority of
operating systems will be a screen window. This is followed by end1l,
with the effect of writing a new line.

® Depending on the system used, the window in which the program is
executed may be closed automatically when the program terminates,
and this may happen too quickly for the user to read the message. The
statements
char x; cin >> x;
pause the program until the user enters a character from the keyboard.
They may be unnecessary on systems that keep the window open after
the program terminates. These statements will be omitted in subsequent
versions of the program, but can be inserted if pausing is desirable.

This also shows how to enter input from the keyboard. First, char x;

declares x to be a variable (in fact a location in computer memory) to
hold a single character. Then cin >> x; instructs the program to wait
for input from the keyboard (the user needs to type a character and press
Enter) and to store the input at x. Here >> is the input operator. We
do not really need x or anything stored in there, but use it merely as a
simple technique to pause the program.

@ return 0;
is finally executed. It terminates the program and returns value 0 to tell
the operating system that the program has run successfully. Returning a
non-zero value would indicate failure.

1.2 Entering data

We are ready to place some useful code inside the shell to read and check
the input data. For good measure, we also compute a couple of things,
namely the risk-neutral probability and the stock price at a given time step n
and node i.

Listing 1.2 Main02.cpp

#include <iostream>
#include <cmath> "
using namespace std;

int main ()
{
double S0,U,D,R; (2]

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-00371-2 - Numerical Methods in Finance with C++

Maciej J. Capinski and Tomasz Zastawniak

Excerpt
More information

//entering data

1.2 Entering data

cout << "Enter SO0: "; cin >> S0;

cout << "Enter U: "; cin >> U;

cout << "Enter D: "; cin >> D;

cout << "Enter R: "; cin >> R;

cout << endl;

//making sure that 0<S0, -1<D<U, -1<R

if (S0<=0.0 || U<=-1.0 || D<=-1.0 || U<=D

{

cout <<
cout <<

return 1;

//checking for arbitrage
if (R>=U || R<=D)

{

cout <<
cout <<

return 1;

cout
cout

<<
<<

"Input data checked"

"There is no arbitrage" << endl << endl;

|| R<=-1.0)

"Illegal data ranges" << endl;
"Terminating program" << endl;

"Arbitrage exists" << endl;
"Terminating program" << endl;

<< endl;

//compute risk-neutral probability

cout

<<

g o=

<< (R-D)/ (U-D)

<< endl;

//compute stock price at node n=3,1i=2

int n=3;

cout
cout
cout

<<
<<
<<

int i=

"po=
wi o=
"S(n,i)

return 0;

We focus our attention on the new features in this piece of code.

2;
<< n
<< i

©® #include <cmath>
loads the header file cmath.h so we can use various mathematical func-
tions defined in the standard library. We need it in order to have the
power function pow () later in the code.

<<
<<
<<
<<

endl;
endl;

SO0*pow (1+U, i) *pow (1+D,n-1)

endl;

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

6

Binomial pricer

® double S0,U,D,R;

declares some variables of type double to store floating point input
data for the spot price S (0), the up and down returns U, D and the risk-
free return R.

In C++ the type of every variable must be declared before the vari-
able is used. Apart from double there are many other variable types.
For example, variables of type int are used to store integer numbers.
In Listing 1.1 we have already seen a variable of type char to hold a
single character.

cout << "Enter SO: "; cin >> SO;
displays a message prompting the user to enter the spot price S (0) and
handles the input. There are similar lines of code for entering U, D, R.

if (S0<=0.0 || U<=-1.0 || D<=-1.0 || U<=D

|| R<=-1.0)
comes next to verify the integrity of input data, ensuring that 0 < S (0),
-1 < D < U and -1 < R. Here | | is the logical OR operator, and
<= is the logical inequality operator, which checks whether or not the
inequality < holds between two numbers. If the condition inside the
round brackets (and) is satisfied, the lines inside the curly brackets
{ and } after the if statement will be executed, displaying a warning
message and terminating the program with return value 1, which indi-
cates failure. If the condition inside the round brackets is not satisfied,
the program skips the lines inside the curly brackets and moves on to
the following line of code.
if (R>=U || R<=D)
similarly checks for the lack of arbitrage, that is, verifies whether or not
D < R < U. Once these checks are completed successfully, messages
to that effect are displayed and the program proceeds to the next line.

cout << "g = " << (R-D)/(U-D) << endl;
computes and displays the risk-neutral probability g = %.
cout << "S(n,i) = " << SO0*pow(1+U,i)*pow(1l+D,n-1)

<< endl;
computes and displays the stock price S (n,i) = S(0)(1 + U)i(1 + D)"
at time step n and node i. The variables n and i are first declared to be
of type int, initiated with values 3 and 2, respectively, and displayed,
just to illustrate how things work.

Exercise 1.1 Tweak the code in Main02 . cpp so the user can enter n
and i from the keyboard.

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

1.3 Functions

1.3 Functions

The various parts of the program perform distinct tasks such as inputting
and verifying data, computing the risk-neutral probability, or computing
the stock price at a given node of the binomial tree. It is good programming
practice to arrange such tasks into separate functions, which is what we do

next.

Listing 1.3 Main03.cpp

#include <iostream>
#include <cmath>
using namespace std;

//computing risk-neutral probability
double RiskNeutProb (double U, double D, double R)
{

return (R-D)/(U-D);

//computing the stock price at node n,i

double S(double S0, double U, double D, int n, int 1)

{
return SO*pow(1+U, i) *pow(1+D,n-1);

//inputting, displaying and checking model data
int GetInputData (double& SO,
double& U, double& D, double& R)

//entering data

cout << "Enter SO0: "; cin >> SO0;
cout << "Enter U: "; cin >> U;
cout << "Enter D: "; cin >> D;
cout << "Enter R: "; cin >> R;

cout << endl;

//making sure that 0<S0, -1<D<U, -1<R
if (S0<=0.0 || U<=-1.0 || D<=-1.0 || U<=D
|| R<=-1.0)
{
cout << "Illegal data ranges" << endl;
cout << "Terminating program" << endl;
return 1;

//checking for arbitrage
if (R>=U || R<=D)

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

8 Binomial pricer

cout << "Arbitrage exists" << endl;
cout << "Terminating program" << endl;
return 1;

cout << "Input data checked" << endl;
cout << "There is no arbitrage" << endl << endl;

return 0;

}
int main() 9
{

double S0,U,D,R;

if (GetInputData(S0,U,D,R)==1) return 1; ‘3

//compute risk-neutral probability
cout << "g = " << RiskNeutProb(U,D,R) << endl; @

//compute stock price at node n=3,i=2
int n=3; int 1=2;

cout << "n = " << n << endl;

cout << "i = " << 1 << endl;

cout << "S(n,i) = " << S(S0,U,D,n,1) << endl; (7]
return 0;

The program works almost exactly as before, but much of the code has
been moved into functions. Here is a breakdown of the new features.

@ double RiskNeutProb(double U, double D, double R)
tells the compiler that we are defining a function RiskNeutProb ()
that takes three arguments of type double and returns a value of type
double. The body of this function, enclosed within curly brackets, con-
sists of a single line
return (R-D)/(U-D);
which computes the value of the expression and returns it to whatever
part of the program is going to call this function.

When we need to compute the risk-neutral probability, we can write
RiskNeutProb (U, D, R) instead of (R-D)/ (U-D). It will hardly save
us any typing, but a meaningful name for the function improves read-
ability. Moreover, if we decide to change anything in the expression,
perhaps to fix a bug, to improve efficiency or to add some extra

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

1.3 Functions 9

functionality, we can do it all in one place, which can be very useful
if the risk-neutral probability needs to be evaluated in several different
places in the code.

© The next function
double S(double SO0, double U, double D, int n, int i)
is similar. It takes three arguments of type double and two of type int,
and returns a value of type double, computed using the appropriate
formula for the stock price at a given node.

When an argument is passed to a function as above, for example as
in double SO, it is said to be passed by value. It is important to un-
derstand what happens in this case. When the function is called, a copy
of that variable is made in a separate location in computer memory.
The function can see and change the copy, but has no access to the
original variable. On the other hand, the calling program cannot see the
copy (which is in fact destroyed when the function returns control to
the calling program) and only has access to the original variable.

In many situations it is important to know that a function has not al-
tered, perhaps inadvertently, the original value of a variable passed to
it. For example, it would not do if the function RiskNeutProb () inad-
vertently changed the value of U, which is then used again elsewhere in
the program to compute the stock price. Passing a parameter by value
guarantees that this cannot happen. On the other hand, making copies
of variables consumes time, possibly a consideration when calls to the
same function are made a large number of times.

© When defining a function to handle input data we face a problem be-
cause a function in C++ can return only a single value, but we want to
enter four numbers as inputs, and the function will need to pass all of
them to the program. To deal with this, in
int GetInputData (double& SO,

double& U, double& D, double& R)
the arguments are passed by reference, which is indicated by &. In this
case a single copy of the variable in computer memory is shared by
the function and the calling program. The function can see and alter
the shared variable. Any changes made by the function to this variable
remain available to the calling program when the function returns con-
trol. This is exactly what we need to pass on the values of the input
data.
There is an older and now much out of favour method of achieving

a similar result by passing a pointer to a variable. It will be covered in
Section 1.6.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-00371-2 - Numerical Methods in Finance with C++
Maciej J. Capinski and Tomasz Zastawniak

Excerpt

More information

10 Binomial pricer

The code for inputting and verifying data is largely the same as in
Listing 1.2, but now it is placed inside the function. In addition, the
function returns a value of type int, which is used to indicate to the
calling program whether or not inputting data has been successful.

© The body of main () has been streamlined and made more readable.
Much of the code has been moved into functions and replaced by calls
to these functions:

© if (GetInputData(S0,U,D,R)==1) return 1; takes care of
inputting and verifying the data, checks if this has been successful,
and terminates the program if not.
Note that == is the logical equality operator, returning a true
value if the expressions on either side are equal, and false otherwise.
Do not confuse it with =, the assignment operator.

® RiskNeutProb(U,D,R) computes the risk-neutral probability.
@ s(s0,U,D,n,i) computes the stock price at the given node.

Incidentally, int main () indicates that main () is also a function,
which returns a value of type int and takes no arguments, as shown
by the empty brackets ().

Exercise 1.2 Write a function called interchange () that inter-
changes the contents of two variables of type double, which are to
be passed to the function by reference.

1.4 Separate compilation

If the program uses several functions, which may also be used by other
programs, it is advisable to place the functions into a separate file, which
is what we do next.

Listing 1.4 BinModelO1.cpp

#include <iostream>
#include <cmath>
using namespace std;

double RiskNeutProb (double U, double D, double R)
{

return (R-D)/(U-D) ;
}

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107003712
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107003712:

