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Risk and return

1.1 Expected return

1.2 Variance as a risk measure

1.3 Semi-variance

Financial investors base their activity on the expectation that their invest-
ment will increase over time, leading to an increase in wealth. Over a fixed
time period, the investor seeks to maximise the return on the investment,
that is, the increase in asset value as a proportion of the initial investment.
The final values of most assets (other than loans at a fixed rate of interest)
are uncertain, so that the returns on these investments need to be expressed
in terms of random variables. To estimate the return on such an asset by a
single number it is natural to use the expected value of the return, which
averages the returns over all possible outcomes.

Our uncertainty about future market behaviour finds expression in the
second key concept in finance: risk. Assets such as stocks, forward con-
tracts and options are risky because we cannot predict their future values
with certainty. Assets whose possible final values are more ‘widely spread’
are naturally seen as entailing greater risk. Thus our initial attempt to mea-
sure the riskiness of a random variable will measure the spread of the re-
turn, which rational investors will seek to minimise while maximising their
return.

In brief, return reflects the efficiency of an investment, risk is concerned
with uncertainty. The balance between these two is at the heart of portfo-
lio theory, which seeks to find optimal allocations of the investor’s initial
wealth among the available assets: maximising return at a given level of
risk and minimising risk at a given level of expected return.
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2 Risk and return

1.1 Expected return

We are concerned with just two time instants: the present time, denoted
by 0, and the future time 1, where 1 may stand for any unit of time. Sup-
pose we make a single-period investment in some stock with the current
price S (0) known, and the future price S (1) unknown, hence assumed to
be represented by a random variable

S (1) : Ω→ [0,+∞),

where Ω is the sample space of some probability space (Ω,F , P) . The
members of Ω are often called states or scenarios. (See [PF] for basic
definitions.)

When Ω is finite, Ω = {ω1, . . . , ωN}, we shall adopt the notation

S (1, ωi) = S (1)(ωi) for i = 1, . . . ,N,

for the possible values of S (1). In this setting it is natural to equip Ω with
the σ-field F = 2Ω of all its subsets. To define a probability measure P :
F → [0, 1] it is sufficient to give its values on single element sets, P({ωi}) =

pi, by choosing pi ∈ (0, 1] such that
∑N

i=1 pi = 1. We can then compute the
expected price at the end of the period

E(S (1)) =

N∑
i=1

S (1, ωi)pi,

and the variance of the price

Var(S (1)) =

N∑
i=1

(S (1, ωi) − E(S (1)))2 pi.

Example 1.1
Assume that S (0) = 100 and

S (1) =

{
120 with probability 1

2 ,

90 with probability 1
2 .

Then E(S (1)) = 1
2 120 + 1

2 90 = 105 and Var(S (1)) = (120 − 105)2 1
2 +

(90 − 105)2 1
2 = 152. Observe also that the standard deviation, which is the

square root of the variance, is equal to
√

Var(S (1)) = 15.
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1.1 Expected return 3

Exercise 1.1 Assume that U,D ∈ R are such that −1 < D < U.
Assume also that S has a binomial distribution, that is

P
(
S (1) = S (0) (1 + U)k (1 + D)N−k

)
=

(
N
k

)
pk (1 − p)N−k ,

for k ∈ {0, 1, . . . ,N}. Compute E(S (1)) and Var(S (1)).

When S (1) is continuously distributed, with density function f : R→ R,
then

E(S (1)) =

∫ ∞

−∞

x f (x)dx,

and

Var(S (1)) =

∫ ∞

−∞

(x − E(S (1)))2 f (x)dx.

Example 1.2
Assume that S (1) = S (0) exp (m + sZ) , where Z is a random variable with
standard normal distribution N(0, 1). This means that S (1) has lognormal
distribution. The density function of S (1) is equal to

f (x) =
1

xs
√

2π
e−

(ln x
S (0) −m)2

2s2 for x > 0,

and 0 for x ≤ 0. We can compute the expected price as

E(S (1)) =

∫ ∞

0
x f (x)dx

=

∫ ∞

0

1

s
√

2π
e−

(ln x
S (0) −m)2

2s2 dx

=

∫ ∞

−∞

S (0)esy+m 1
√

2π
e−

y2

2 dy (taking y =
1
s

(
ln

x
S (0)

− m
)

)

= S (0)em+ s2
2

∫ ∞

−∞

1
√

2π
e−

(y−s)2

2 dy

= S (0)em+ s2
2 .
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4 Risk and return

Exercise 1.2 Consider S (1) from Example 1.2. Show that

Var(S (1)) = S (0)2
(
es2
− 1

)
e2m+s2

.

While we may allow any probability space, we must make sure that
negative values of the random variable S (1) are excluded since negative
prices make no sense from the point of view of economics. This means
that the distribution of S (1) has to be supported on [0,+∞) (meaning that
P(S (1) ≥ 0) = 1).

The return (also called the rate of return) on the investment S is a ran-
dom variable K : Ω→ R, defined as

K =
S (1) − S (0)

S (0)
.

By the linearity of mathematical expectation, the expected (or mean) re-
turn is given by

E(K) =
E(S (1)) − S (0)

S (0)
.

We introduce the convention of using the Greek letter µ for expectations of
various random returns

µ = E(K),

with various subscripts indicating the context, if necessary.
The relationships between the prices and returns can be written as

S (1) = S (0)(1 + K),

E(S (1)) = S (0)(1 + µ),

which illustrates the possibility of reversing the approach: given the returns
we can find the prices.

The requirement that S (1) is nonnegative implies that we must have
K ≥ −1. This in particular excludes the possibility of considering K with
Gaussian (normal) distribution.

At time 1 a dividend may be paid. In practice, after the dividend is paid,
the stock price drops by this amount, which is logical. Thus we have to
determine the price that includes the dividend; more precisely, we must
distinguish between the right to receive that price (the cum dividend price)
and the price after the dividend is paid (the ex dividend price). We assume
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1.2 Variance as a risk measure 5

that S (1) denotes the latter, hence the definition of the return has to be
modified to account for dividends:

K =
S (1) + Div(1) − S (0)

S (0)
.

A bond is a special security that pays a certain sum of money, known
in advance, at maturity; this sum is the same in each state. The return on a
bond is not random (recall that we are dealing with a single time period).
Consider a bond paying a unit of home currency at time 1, that is B(1) = 1,
which is purchased for B(0) < 1. Then

R =
1 − B(0)

B(0)

defines the risk-free return. The bond price can be expressed as

B(0) =
1

1 + R
,

giving the present value of a unit at time 1.

Exercise 1.3 Compute the expected returns for the stocks described
in Exercise 1.1 and Example 1.2.

Exercise 1.4 Assume that S (0) = 80 and that the ex dividend price
is

S (1) =


60 with probability 1

6 ,

80 with probability 3
6 ,

90 with probability 2
6 .

The company will pay out a constant dividend (independent of the fu-
ture stock price). Compute the dividend for which the expected return
on stock would be 20%.

1.2 Variance as a risk measure

The concept of risk in finance is captured in many ways. The basic and
most widely used one is concerned with risk as uncertainty of the unknown
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6 Risk and return

future value of some quantity in question (here we are concerned with re-
turn). This uncertainty is understood as the scatter around some reference
point. A natural candidate for the reference value is the mathematical ex-
pectation (though other benchmarks are sometimes considered). The extent
of scatter is conveniently measured by the variance. This notion takes care
of two aspects of risk:

(i) The distances between possible values and the expectation.
(ii) The probabilities of attaining the various possible values.

Definition 1.3
By (the measure of) risk we mean the variance of the return

Var(K) = E(K − µ)2 = E(K2) − µ2,

or the standard deviation
√

Var(K).

The variance of the return can be computed from the variance of S (1),

Var(K) = Var
(
S (1) − S (0)

S (0)

)
=

1
S (0)2 Var (S (1) − S (0))

=
1

S (0)2 Var (S (1)) .

We use the Greek letter σ for standard deviations of various random
returns

σ =
√

Var(K),

qualified by subscripts, as required.

Exercise 1.5 In a market with risk-free return R > 0, we buy a
‘leveraged’ stock S at time 0 with a mixture of cash and a loan at
rate R. To buy the stock for S (0) we use wS (0) of our own cash and
borrow (1 − w)S (0), for some w ∈ (0, 1). Denote the returns at time 1
on the stock and leveraged position by KS and Klev respectively.
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1.2 Variance as a risk measure 7

Derive the relation

Klev = R +
1
w

(KS − R) ,

and find the relationship between the standard deviations of the stock
and the leveraged position.

Standard deviation alone does not fully capture the risk of an investment.
We illustrate this with a simple example.

Example 1.4
Consider three assets with today’s prices S i(0) = 100 for i = 1, 2, 3 and
time 1 prices with the following distributions:

S 1(1) =

{
120 with probability 1

2 ,

90 with probability 1
2 ,

S 2(1) =

{
140 with probability 1

2 ,

90 with probability 1
2 ,

S 3(1) =

{
130 with probability 1

2 ,

100 with probability 1
2 .

We can see that

σ1 =
√

Var(K1) = 0.15,

σ2 =
√

Var(K2) = 0.25,

σ3 =
√

Var(K2) = 0.15.

Here σ2 > σ1 and σ3 = σ1, but both the second and third assets are
preferable to the first, since at time 1 they bring in more cash. We shall
return to this example in the next section.

When considering the risk of an investment we should take into account
both the expectation and and the standard deviation of the return. Given the
choice between two securities a rational investor will, if possible, choose
that with the higher expected return and lower standard deviation, that is,
lower risk. This motivates the following definition.
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8 Risk and return

µ

�

Figure 1.1 Efficient subset.

Definition 1.5
We say that a security with expected return µ1 and standard deviation σ1

dominates another security with expected return µ2 and standard devia-
tion σ2 whenever

µ1 ≥ µ2 and σ1 ≤ σ2.

The meaning of the word ‘dominates’ is that we assume the investors to
be risk averse. One can imagine an investor whose personal goal is just the
excitement of playing the market. This person will not pay any attention to
return or may prefer higher risk. However, it is not our intention to cover
such individuals by our theory.

The playground for portfolio theory will be the (σ, µ)-plane, in fact the
right half-plane since the standard deviation is non-negative. Each security
is represented by a dot on this plane. This means that we are making a
simplification by assuming that the expectation and variance are all that
matters when investment decisions are made.

We assume that the dominating securities are preferred, which geomet-
rically (geographically) means that for any two securities, the one lying
further north-west in the (σ, µ)-plane is preferable. This ordering does not
allow us to compare all pairs: in Figure 1.1 we see for instance that the
pairs (σ1, µ1) and (σ3, µ3) are not comparable.

Given a set A of securities in the (σ, µ)-plane, we consider the subset
of all maximal elements with respect to the dominance relation and call
it the efficient subset. If the set A is finite, finding the efficient subsets
reduces to eliminating the dominated securities. Figure 1.1 shows a set of
five securities with efficient subset consisting of just three, numbered 1, 3
and 4.
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1.3 Semi-variance 9

Exercise 1.6 Assume that we have three assets. The first has ex-
pected return µ1 = 10% and standard deviation of return equal to
σ1 = 0.25. The second has expected return µ2 = 15% and standard
deviation of return equal to σ2 = 0.3. Assume that the future prices of
the third asset will have E(S 3(1)) = 100,

√
Var(S 3(1)) = 20. Find the

ranges of prices S 3(0) so that the following conditions are satisfied:
(i) The third asset dominates the first asset.

(ii) The third asset dominates the second asset.
(iii) No asset is dominated by another asset.

1.3 Semi-variance

Consider the three assets described in Example 1.4. Although σ1 = σ3,

the third asset carries no ‘downside risk’, since neither outcome for S 3(1)
involves a loss for the investor. Similarly, although σ2 > σ1, the downside
risk for the second asset is the same as that for the first (a 50% chance of
incurring a loss of 10), but the expected return for the second asset is 15%,
making it the more attractive investment even though, as measured by vari-
ance, it is more risky. Since investors regard risk as concerned with failure
(i.e. downside risk), the following modification of variance is sometimes
used. It is called semi-variance and is computed by a formula that takes
into account only the unfavourable outcomes, where the return is below the
expected value

E(min{0,K − µ})2. (1.1)

The square root of semi-variance is denoted by semi-σ. However, this no-
tion still does not agree fully with the intuition.

Example 1.6
Assume that Ω = {ω1, ω2}, P({ω1}) = P({ω2}) = 1

2 and

K(ω1) = 10%,

K(ω2) = 20%.
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10 Risk and return

Consider a modification K′ with

K′(ω1) = 10%,

K′(ω2) = 30%.

Then K′ is definitely better than K but the semi-variance and the variance
for K′ are both higher than for K.

If variance or semi-variance are to represent risk, it is illogical that a
better version should be regarded as more risky. This defect can be rectified
by replacing the expectation by some other reference point, for instance the
risk-free return with the following modification of (1.1),

E(min{0,K − R})2,

which eliminates the above unwanted feature. Instead of the risk-free rate,
one can also consider the return required by the investor.

These versions are not very popular in the financial world, the variance
being the basic measure of risk. In our presentation of portfolio theory
we follow the historical tradition and take variance as the measure of risk.
It is possible to develop a version of the theory for alternative ways of
measuring risk. In most cases, however, such theories do not produce neat
analytic formulae as is the case for the mean and variance.

We will return to a more general discussion of risk measures in the final
chapters of this volume. An analysis of the popular concept of Value at
Risk (VaR), which has been used extensively in the banking and investment
sectors since the 1990s, will lead us to conclude that, despite its ubiquity,
this risk measure has serious shortcomings, especially when dealing with
mixed distributions. We will then examine an alternative which remedies
these defects but still remains mathematically tractable.
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