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Discrete-time processes

1.1 General definitions

1.2 Martingales

1.3 The Doob decomposition

1.4 Stopping times

1.5 Doob’s inequalities and martingale convergence

1.6 Markov processes

1.7 Proofs

Our study of stochastic processes, motivated by their use in financial

modelling, begins with discrete-time models, including and generalising

the models studied in detail in Discrete Models of Financial Markets

[DMFM], where the typical ‘process’ was simply a finite sequence of ran-

dom variables defined on some finite sample space. We generalise this in

two directions, by considering a general probability space (Ω,F , P) and al-

lowing our processes to be infinite sequences of random variables defined

on this space. Again the key concept is that of martingales, and we study

the basic properties of discrete martingales in preparation for our later con-

sideration of their continuous-time counterparts. We then briefly consider

how another basic class of discrete-time processes, Markov chains, enters

into the study of credit ratings, and develop some of their simple proper-

ties. Throughout, we will make extensive use of the fundamental properties

of probability measures and random variables described in Probability for

Finance [PF], and we refer the reader to that text for any probabilistic no-

tions not explicitly defined here.
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2 Discrete-time processes

1.1 General definitions

We take a discrete time scale with n = 0, 1, 2, . . . denoting the number of

consecutive steps of fixed length h > 0, so time instants are t = nh ∈

[0,∞). In contrast to [DMFM], where we had finitely many times, we allow

infinitely many steps as a prelude to the continuous case, where t ∈ [0,∞)

is arbitrary, which we study in the subsequent chapters.

We assume that a probability space (Ω,F , P) is available, sufficiently

rich to accomodate the various collections of random variables we wish to

define. We have to allow infinite Ω to be able to discuss random variables

without restricting their values to some finite set. ThusΩ is an arbitrary set,

while F is a σ-field, and P a countably additive probability measure.

From the financial perspective, a random variable is a mathematical ob-

ject modelling an unknown quantity such as a stock price. A sequence of

random variables will correspond to its future evolution with no limiting

horizon, as described in the next definition.

Definition 1.1

A discrete-time stochastic process is a sequence of random variables, that

is an F -measurable function

X(n) : Ω→ R for n ≥ 0,

and we assume that X(0) is constant.

We employ the notation X = (X(n))n≥0 but often we refer to ‘the pro-

cess X(n)’ and alternatively we will use X to denote an arbitrary random

variable, thus risking a lack of precision. This allows us, for instance, to in-

dicate the time variable and to keep the presentation brief and free of pure

formalism. In the same spirit, we will often drop the expression ‘almost

surely’ after any relation between random variables.

Example 1.2

A classical example of a probability space, which, as it will turn out, is

sufficiently rich for all our purposes, is Ω = [0, 1], F = B([0, 1]) – Borel

sets, P = m – Lebesgue measure (a construction can be found in [PF]).
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1.1 General definitions 3

Example 1.3

Consider a binomial tree, discussed in detail in [DMFM], determined by

two single-step returns D < U.We define a sequence of returns

K(n) : [0, 1]→ R,

n = 1, 2, . . . , by

K(n, ω) = U1An
(ω) + D1[0,1]\An

(ω),

An =

[

0,
1

2n

)

∪

[

2

2n
,

3

2n

)

∪ · · · ∪

[

2n − 2

2n
,

2n − 1

2n

)

,

and clearly

P(K(n) = U) = P(K(n) = D) =
1

2
.

For instance,

K(2) =

{

U if ω ∈ [0, 1
4
) ∪ [ 1

2
,

3
4
),

D if ω ∈ [ 1
4
,

1
2
) ∪ [ 3

4
, 1].

The stock prices are defined in a familiar way by

S (n) = S (n − 1)(1 + K(n)),

n = 1, 2, . . . , with S (0) given, deterministic.

Exercise 1.1 Show that for each n, the random variables

K(1), . . . ,K(n) are independent.

Exercise 1.2 Redesign the random variables K(n) so that P(K(n) =

U) = p ∈ (0, 1), arbitrary.

Example 1.4

A version of a binomial tree with additive rather than multiplicative

changes is called a symmetric random walk and is defined by taking Z(0)
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4 Discrete-time processes

given and

Z(n) = Z(n − 1) + L(n),

L(n) = ±1, each with probability
1

2
.

The sequence L(n) defining a symmetric random walk can conveniently

be regarded as representing a sequence of independent tosses of a fair coin.

The outcome of each coin toss might determine whether a gambler gains or

loses one unit of currency, so that the random variable Z(n) = Z(0)+
n
∑

i=1

L(i)

describes his fortune after n games if he starts with Z(0). Alternatively, it

could describe the position on the line reached after n steps by a particle

starting at position Z(0) and, at the ith step (for each i ≤ n), moving one

unit to the right if L(i) = 1, or to the left if L(i) = −1. If the particle

moves with constant velocity between the changes of direction, its path

can be visualised by joining subsequent points (n, Z(n)) in the plane with

line segments.

Information given by an initial segment X(0), . . . , X(n) of the sequence

X can be captured by means of a filtration of partitions if the number of

possible values of random variables is finite. We exploited this in [DMFM],

but here we take a more general approach, replacing partitions by σ-fields,

which allows us to consider arbitrary random variables.

Definition 1.5

The filtration generated by a discrete-time process (X(n))n≥0 (also known

as its natural filtration) is a family of σ-fields

F X
n = σ({X(k)−1(B) : B ∈ B(R), k = 0, . . . , n}),

where for any family of setsA, σ(A) is the smallest σ-field containingA,

and B(R) is the σ-field of Borel sets on the real line.

Observe that the same result would be obtained by taking B to run

through all intervals, or, indeed, all intervals of the form (−∞, a] for a ∈ R.

Since all elements of the sequence X(n) are F -measurable, F X
n ⊂ F for

each n. In addition, X(n) is clearly F X
n -measurable.

Note that, by its definition, the sequence F X
n is increasing with respect

to set inclusion ⊂. This motivates introducing a general notion to indicate

this
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1.1 General definitions 5

Definition 1.6

A filtration is a sequence ofσ-fieldsFn such thatFn ⊂ F andFn ⊂ Fn+1.A

process X is adapted if each X(n) isFn-measurable. If an arbitrary filtration

(Fn)n≥0. has been fixed, we call (Ω,F , (F )n≥0, P) a filtered probability

space.

Note that for any process its natural filtration is the smallest filtration to

which it is adapted.

As we wish X(0) to be constant (almost surely, of course!), we assume

that F0 is trivial; that is, it is simply made up of all P-null sets and their

complements.

Example 1.7

Consider K(n) as given in Example 1.3. Clearly, for every n ≥ 1

{K(n)−1(B) : B ∈ B(R)} = {∅, [0, 1], An, [0, 1] \ An}

and the σ-field Fn consists of all null sets and all possible unions of inter-

vals of the form [ i−1
2n ,

i
2n ), i = 1, . . . , 2n − 1 and [ 2n−1

2n , 1] (This is an example

of a field generated by so-called atoms.)

Exercise 1.3 Find the filtration in Ω = [0, 1] generated by the pro-

cess X(n, ω) = 2ω1[0,1− 1
n

](ω).

Example 1.8

The previous exercise illustrates the idea of flow of information described

by a filtration. With increasing n, the shape of some function defined on Ω

(here ω 	→ 2ω) is gradually revealed. The values of X, if known, allow us

to make a guess about the location of ω. If for instance X(2, ω) = 1
2
, we

know that ω = 1
4
, but if X(2, ω) = 0, we only know that ω ∈ ( 1

2
, 1]. Clearly,

our information about ω, given the value of X, increases with n.
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6 Discrete-time processes

1.2 Martingales

We prepare ourselves for the estimation of some random variable Y after

we observe a process X up to some future time n. The information obtained

will be reflected in the σ-field G = Fn. The idea of the approximation of

Y given the information contained in G is explained in the next definition

(see [PF] for more details).

Definition 1.9

The conditional expectation of Y given G is a random variable E(Y |G),

which is:

1. G-measurable,

2. for all A ∈ G,
∫

A

E(Y |G)dP =

∫

A

YdP.

Example 1.10

In Ω = [0, 1], take the σ-field

G =

{

B ⊂

[

0,
1

2

)

: B ∈ B(R)

}

∪

{

B ∪

[

1

2
, 1

]

: B ⊂

[

0,
1

2

)

, B ∈ B(R)

}

and Y(ω) = ω2
. Condition 1 imposes the constraint that the conditional

expectation be constant on [ 1
2
, 1] but it can be arbitrary on [0, 1

2
). If so, Y

will be the best approximation of itself on [0, 1
2
), while the constant c is

given by condition 2 with A = [ 1
2
, 1] by solving cP([ 1

2
, 1]) =

∫

[ 1
2
.1]
ω

2dP

and so

E(Y |G)(ω) =

{

ω
2 if ω ∈ [0, 1

2
),

7
12

if ω ∈ [ 1
2
, 1].

With increasing information about the future, as captured by a filtration

Fn, the accuracy of prediction improves, which follows from the important

tower property of conditional expectation

E(Y |Fn) = E(E(Y |Fn+1)|Fn).

Writing M(n) = E(Y |Fn) above, we have an example of the following no-

tion, crucial in what follows:

Definition 1.11

A process M is a martingale with respect to the filtration Fn if, for all
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1.2 Martingales 7

n ≥ 0, E(|M(n)|) < ∞, and

M(n) = E(M(n + 1)|Fn).

Note that a martingale is Fn-adapted, by the definition of conditional

expectation.

Exercise 1.4 Working on Ω = [0, 1], find (by means of concrete

formulae and sketching the graphs) the martingale E(Y |Fn), where

Y(ω) = ω2 and Fn is generated by X(n, ω) = 2ω1[0,1− 1
n

](ω) (see Exer-

cise 1.3).

Exercise 1.5 Show that the expectation of a martingale is constant

in time. Find an example showing that constant expectation does not

imply the martingale property.

Exercise 1.6 Show that martingale property is preserved under linear

combinations with constant coefficients and adding a constant.

Exercise 1.7 Prove that if M is a martingale, then for m < n

M(m) = E(M(n)|Fm).

Another classical example of a martingale is the random walk Z(n) =

Z(n−1)+L(n),with filtration generated by L(n). The proof of the martingale

property of a random walk is exactly the same as that of the general result

below.

Proposition 1.12

The sequence obtained by sums of independent random variables with zero

mean is a martingale with respect to the filtration it generates.

Proof Assume that L(n) is an arbitrary sequence of independent random

variables with E(L(n)) = 0, and write

Z(n) = Z(0) +

n
∑

j=1

L( j),

Fn = σ(Z(k) : 0 ≤ k ≤ n).
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8 Discrete-time processes

The properties of the conditional expectation immediately give the result:

E(Z(n + 1)|Fn) = E(Z(n) + L(n + 1)|Fn) (definition of Z)

= E(Z(n)|Fn) + E(L(n + 1)|Fn) (linearity)

= Z(n) + E(L(n + 1)) (definition of Fn, independence)

= Z(n).

�

We now develop a method of producing new martingales from a given

one, which was already exploited in [DMFM], where we discussed the

value process of a trading strategy. The result we wish to highlight is some-

times called a theorem on discrete stochastic integration. As we shall see

later, the name is well deserved. To state this theorem, we need one more

definition, which codifies an important property of trading strategies: recall

that, for n > 0, an investor’s decision to hold x(n) units of stock throughout

the period between trading dates n − 1 and n was based on his knowledge

of the behaviour of the stock price up to time n − 1, so that the random

variable x(n) is Fn−1-measurable. Such a process x(n) was said to be pre-

dictable, and we use this idea for a general definition:

Definition 1.13

A process X = (X(n))n≥1 is predictable relative to a given filtration (Fn)n≥0

if for every n ≥ 1, X(n) is Fn−1-measurable.

Note that the sequence starts at n = 1, so there is no X(0). Recall also

that we take the σ-field F0 to be trivial. Thus if X is predictable, X(1) is a

constant function.

As we saw for trading strategies, predictability means that the variable

X(n) is ‘known’ by time n − 1, so we can ‘predict’ future values of X

one step ahead. This property is incompatible with the martingale property

unless the process is constant.

Proposition 1.14

A predictable martingale is constant.

Proof By definition of martingale M(n−1) = E(M(n)|Fn−1),which equals

M(n) if M is predictable. �

We return to our stock price example. Having bought x(n) shares at time

n−1, we are of course interested in our gains. WhenΩ is finite and P(ω) > 0

for each ω in Ω we know that, under the No Arbitrage Principle, the pric-

ing model admits a risk-neutral probability Q, with Q(ω) > 0 for each
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1.2 Martingales 9

ω (as discussed in [DMFM]). This means that, assuming that investment

in a risk-free asset attracts a constant return R ≥ 0, the discounted stock

prices S̃ (n) = (1 + R)−nS (n) follow a martingale under Q. Working with

discounted values is a sound concept since the alternative risk-free invest-

ment provides a natural benchmark for returns. Our discounted gain (or

loss) at the nth step will be x(n)[S̃ (n) − S̃ (n − 1)]. It is natural to consider

the gains accumulated from time zero:

G(n) = V(0) +

n
∑

i=1

x(i)[S̃ (i) − S̃ (i − 1)].

As we will see, the resulting process, expressing the discounted values,

remains a martingale. In other words, the fairness of the discounted stock

prices expressed by means of martingale property – the ‘best guess’ of fu-

ture prices is the current price – is preserved by the strategy, so this market

cannot be ‘second-guessed’ legally to ensure a profit by making cleverly

chosen purchases and sales of the stock.

Theorem 1.15

Let M be a martingale and H a predictable process. If H is bounded, or if

both H and M are square-integrable, then X(0) = 0,

X(n) =

n
∑

j=1

H( j)[M( j) − M( j − 1)] for n > 0,

defines a martingale.

Proof This is proved in [DMFM] in a multi-dimensional setting for a

finite Ω. The only change needed now is to observe that the conditions

imposed here ensure the integrability of X(n), trivially in the first case and

by the Cauchy–Schwarz inequality in the second. You should fill in the

details by writing out the easy proof of this result yourself, recalling that

H( j) is F j−1-measurable). �

The next exercise provides a converse to the theorem in an important

special case.

Exercise 1.8 Let M be a martingale with respect to the filtration gen-

erated by L(n) (as defined for a random walk), and assume for simplic-

ity M(0) = 0. Show that there exists a predictable process H such that

M(n) =
∑n

i=1 H(i)L(i) (that is M(n) =
∑n

i=1 H(i)[Z(i) − Z(i − 1)], where
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10 Discrete-time processes

Z(i) =
∑i

j=1 L( j). (We are justified in calling this result a representation

theorem: each martingale is a discrete stochastic integral).

Adding a constant to the sum on the right in the above theorem preserves

the martingale property – unlike non-linear operations, which typically de-

stroy it.

Exercise 1.9 Show that the process Z2(n), the square of a random

walk, is not a martingale, by checking that E(Z2(n+1)|Fn) = Z2(n)+1.

Recall the Jensen inequality: If ϕ : R → R is a convex function and

ϕ(X) ∈ L1(P), then we have

E(ϕ(X)|G) ≥ ϕ(E(X|G)).

Applied to ϕ(x) = x2
, X = M(n + 1), G = Fn, this gives the following

property of the square of a martingale

E(M2(n + 1)|Fn) ≥ (E(M(n + 1)|Fn))2
= M2(n).

This leads to some useful general notions.

Definition 1.16

A process X(n)-adapted to a filtration Fn with all X(n) integrable, is

1. a submartingale if E(X(n + 1)|Fn) ≥ X(n),

2. a supermartingale if E(X(n + 1)|Fn) ≤ X(n).

Clearly, a martingale is a sub- and supermartingale. A process which is

both, sub- and supermartingale, is a martingale. The above application of

Jensen’s inequality shows that the square of a martingale is a submartin-

gale.

Exercise 1.10 Show that if X is a submartingale, then its expectations

increase with n:

E(X(0)) ≤ E(X(1)) ≤ E(X(2)) ≤ · · · ,
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