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Asymptotics of Laplace-type integrals

In this opening chapter we present a detailed account, together with a series of exam-
ples of increasing complexity, of the classical method of steepest descents applied
to Laplace-type integrals. Consideration is also given to the common causes of
non-uniformity in the asymptotic expansions so produced due to a variety of coa-
lescence phenomena. The chapter concludes with a brief discussion of the Stokes
phenomenon and hyperasymptotics, both of which have undergone intense develop-
ment during the past two decades. Such a preliminary discussion, as well as hopefully
being of general interest in its own right, is necessary for the remaining chapters,
since the Hadamard expansion procedure can be viewed as an ‘exactification’ of the
method of steepest descents yielding hyperasymptotic levels of accuracy. Consider-
able space in the later chapters is devoted to showing how the Hadamard expansion
procedure can be modified to deal with various coalescence problems.

1.1 Historical introduction

One of the most important methods of asymptotic evaluation of certain types of inte-
gral is known as the method of steepest descents. This method has its origins in the
observation made by Laplace in connection with the estimation of an integral arising
in probability theory of the form (Laplace, 1820; Gillespie, 1997)

In =
∫ b

a
f (x){g(x)}ndx =

∫ b

a
f (x)enψ(x)dx (n → +∞).

Here f (x) and g(x) are real continuous functions defined on the interval [a, b]
(which may be infinite), with g(x) > 0 and ψ(x) = log g(x). Laplace argued that
the dominant contribution to this integral as n → +∞ should arise from a neighbour-
hood of the point where g(x) (or ψ(x)) attains its maximum value. In the simplest
situation where ψ(x) possesses a single maximum at the point x = x0 ∈ (a, b), so
that ψ ′(x0) = 0, ψ ′′(x0) < 0 and f (x0) �= 0, then ψ(x) and f (x) may be replaced
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2 Asymptotics of Laplace-type integrals

by the leading terms in their Taylor series expansion. In a small neighbourhood of
length δ either side of x = x0, we then find

In �
∫ x0+δ

x0−δ

f (x0)e
n{ψ(x0)+(x−x0)

2ψ ′′(x0)/2}dx

� f (x0)e
nψ(x0)

(
2

−nψ ′′(x0)

)1/2 ∫ u∗

−u∗
e−u2

du,

where u∗ = δ(−nψ ′′(x0)/2)1/2. Assuming δ is chosen such that n1/2δ → ∞ as
n → +∞, we can replace the integration limits in the last integral over u by ±∞
and evaluate the integral, to obtain Laplace’s result

In � f (x0)e
nψ(x0)

( −2π

nψ ′′(x0)

)1/2

(n → +∞).

This idea was subsequently employed by Cauchy (1829) in the estimation of the
large-n behaviour of the coefficients an in certain series expansions, and in particular
those in the Lagrange inversion series. This was motivated by the wish to determine
the radius of convergence of such series expansions and to examine their behaviour
on the circle of convergence. Let g(z) denote a function that is analytic at the point
z = α (with g′(α) �= 0) and F(z) a function analytic at z = 0. Then the equation
z = wg(α + z) has a unique solution z = z(w) valid in a neighbourhood of w = 0
and F(z(w)) = F(0) + ∑∞

n=1 anwn . The coefficients an are given by

an = 1

2π in

∮
C

F ′(z)gn(α + z)

zn
dz = 1

2π in

∮
C

F ′(z)enψ(z)dz,

where ψ(z) = log(g(α + z)/z) and C is a circular contour surrounding z = 0.
Cauchy then applied Laplace’s argument in the complex plane (with z = reiθ ): the
circle C was expanded until it passed through the saddle point of ψ(z) (given by the
zeros of ψ ′(z) = 0) closest to the origin. Cauchy never varied his choice of contour:
he always took C to be a circle, thereby depriving his treatment of the necessary
generality and incorrectly dealing with the case of multiple saddle points (Petrova
and Solov’ev, 1997).

A quarter of a century later, Stokes (1850) investigated the asymptotics of the
integral 1

W (m) =
∫ ∞

0
cos 1

2π(w3 − mw) dw (m → +∞)

in connection with the intensity of light in the neighbourhood of a caustic in the then
new wave theory of light applied to the rainbow. The zeros of W (m) corresponded
to the location of darkbands in a system of supernumerary rainbows, of which up

1 The integral W (m) can be expressed in terms of the Airy function Ai(−αm), where
α = (π/2)2/33−1/3.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00258-6 - Hadamard Expansions and Hyperasymptotic Evaluation: An
Extension of the Method of Steepest Descents
R. B. Paris
Excerpt
More information

http://www.cambridge.org/9781107002586
http://www.cambridge.org
http://www.cambridge.org


1.1 Historical introduction 3

to 30 had been observed experimentally. By writing the cosine as the real part of
its associated exponential and rotating the integration path through −π/6, Stokes
reduced his integral to consideration of∫ ∞

0
exp(−t3 + 3q2t) dt, q = (π/2)1/3(m/3)1/2eπ i/6.

He then proceeded to expand the integrand about t = q (a saddle point) and took
his integration path in the neighbourhood of this point in the direction in which the
imaginary part of the exponent in the exponential factor remained constant (the path
of steepest descent through t = q, see §1.2.1). By bounding the contribution from
different parts of the deformed path, he was able to establish that the dominant contri-
bution to this integral arose from a neighbourhood of t = q. Stokes thereby obtained
the result

W (m) ∼ (2/3)1/2(m/3)−1/4 cos{π(m/3)3/2 − π/4} (m → +∞),

from which he was able to calculate approximations to the first 50 zeros of W (m).
Although Stokes did not mention the terms saddle point or path of steepest descent,
he was, nevertheless, effectively employing the ideas of the saddle-point method
in the complex plane. A more detailed account of this problem together with a
discussion of Stokes’ other mathematical contributions can be found in Paris (1996).

In 1863, Riemann investigated an asymptotic approximation for the Gauss hyper-
geometric function 2 F1(n − c, n + a + 1; 2n + a + b + 2; x) when n → +∞ and
the variable x has complex values. This function can be expressed in terms of the
integral

In =
∫ 1

0
f (t)

(
t (1 − t)

1 − xt

)n

dt =
∫ 1

0
f (t)enψ(t)dt,

where f (t) = ta(1 − t)b(1 − xt)c and ψ(t) = log{t (1 − t)/(1 − xt)}. This integral
defines an analytic function in the complex x-plane cut along the real axis from x = 1
to x = +∞. His paper (Riemann, 1863) on this calculation was never finished in his
lifetime: the second part, containing the asymptotic calculation, contained only key
expressions to guide him during the writing-up process. The text, together with some
of the computations in this posthumous paper, were filled in by H. Schwarz. Riemann
determined the two saddle points ts1 and ts2 of ψ(t) (given by ψ ′(t) = 0) as

ts1 = 1

1 + √
1 − x

, ts2 = 1

1 − √
1 − x

,

with the branch of the square root having positive real part in the cut x-plane. He
then proceeded to show that the integration path could be deformed to pass through
the saddle ts1 and argued that as n → +∞ the dominant contribution to In arises
from a neighbourhood of ts1. By integrating along the direction of steepest descent
through the saddle, he obtained the result
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4 Asymptotics of Laplace-type integrals

In ∼ (π/n)1/2(1 − x)(b+c)/2+ 1
4

(1 + √
1 − x)2n+a+b+1

(n → +∞),

although no mention was made of the sector of validity (in the complex x-plane) of
this approximation.

This paper is frequently cited as containing the germ of the idea of the method of
steepest descents. If Riemann had used the whole path connecting t = 0 to t = 1, he
would have obtained the full asymptotic expansion of In , instead of just the leading
term. It is clear, however, that he must have been in possession of the steepest descent
technique since he used this method with great skill in his famous expansion 2 of the
function Z(t), related to the Riemann zeta function ζ(s) on the critical line s = 1

2+i t ,
as t → +∞; for a detailed account, see Edwards (1974, Ch. 7).

An interesting survey paper by Petrova and Solov’ev (1997) discusses these devel-
opments (with the exception of those of Stokes) in greater detail. These authors also
point out the work of the Russian mathematician Nekrosov who, about 20 years
after Riemann, considered Cauchy’s problem of the determination of the leading
behaviour of the coefficients in the Langrange inversion series. He considered the
problem in general and discussed the situation when there are several saddle points
of arbitrary multiplicity. He showed the existence of a closed contour passing through
the saddle points along the directions of steepest descent, but only obtained the
dominant contribution from each saddle.

Finally, the first person to obtain a full asymptotic expansion in a specific case
was the physicist Debye (Debye, 1909). He developed the method, after seeing
Riemann’s paper, for the Hankel functions defined in the form

H (1,2)
ν (x) = − 1

π

∫ ∞i∓π

−∞i
e−i xψ(t)dt, ψ(t) = sin t − αt, α = ν

x

for large positive values of x and the order ν. The integrand has two saddle points at
which ψ ′(t) = 0 in the strip −π < Re(t) < π , which are situated symmetrically
about the origin on the real axis when 0 < α < 1 and on the imaginary axis when
α > 1. Debye deformed the contours into steepest descent paths passing through
one or both saddles, and then converted the integrals leading up to and away from a
saddle into a Laplace integral of the form

∫ ∞
0 e−xuφ(u) du by an appropriate change

of variable. Expansion of φ(u) about u = 0 into a series of fractional powers of u
then enabled him to integrate term by term to obtain the asymptotic expansion of
H (1,2)

ν (x) for x and ν → +∞.
Debye also considered the situation when the variable x and ν are large and nearly

equal. In this case, the two saddles in the strip −π < Re(t) < π coalesce to form a
double saddle point at the origin when x = ν. A slight modification of his argument

2 This is the Riemann–Siegel formula which was discovered by Siegel in Riemann’s papers and
published in 1932.
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1.2 The method of steepest descents 5

then enabled him to derive expansions for the Hankel functions as x and ν → +∞
when x � ν.

1.2 The method of steepest descents

1.2.1 Preliminaries

The type of integral under consideration is

I (λ) =
∫

C
eλψ(t) f (t) dt, (1.2.1)

where λ is a large positive 3 parameter and C is a path of finite or infinite extent in the
complex t-plane which is chosen such that I (λ) converges. The amplitude function
f (t) and phase function ψ(t) are assumed to be analytic on and near the path C and,
for the purpose of this section, to be independent of λ.

Let ψ(t) = U (x, y) + iV (x, y) where t = x + iy and U , V , x , y are real. When
λ is large a small displacement along the path C causing a small change in V (x, y)

will, in general, produce a rapid oscillation of the sinusoidal terms in exp(λψ(t)).
This has the consequence that the contribution to the integral will be subject to con-
siderable cancellation between neighbouring parts of the path. An obvious remedy
is to choose a path on which V (x, y) is constant, thereby removing the rapid oscil-
lations of the integrand. The most rapidly varying part of the integrand will then be
exp(λU ) and the dominant contribution will arise from a neighbourhood of the point
where U (x, y) is greatest.

The choice of a path with V (x, y) = constant has another major advantage. For,
such paths are those on which U (x, y) changes the most rapidly. To see this, let us
consider a small displacement from the point t0 given by t = t0 + seiθ , where s > 0
and θ is a phase angle. Then the rate of change of U (x, y) is given by

dU

ds
= ∂U

∂x
cos θ + ∂U

∂y
sin θ = Ux cos θ + Uy sin θ.

Regarded as a function of θ , dU/ds will have a stationary point when its derivative
D with respect to θ vanishes; that is, when D := −Ux sin θ + Uy cos θ = 0. Since
ψ(t) is an analytic function of the complex variable t in the neighbourhood of C , its
derivatives are constrained to satisfy the Cauchy–Riemann equations

Ux = Vy, Uy = −Vx (1.2.2)

in this neighbourhood. Substitution of these equations into the above stationary
condition D = 0 yields

Vx cos θ + Vy sin θ = 0.

3 If λ = |λ|eiφ is complex, then we can take |λ| as the large parameter and absorb the phase term eiφ

into ψ(t).
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6 Asymptotics of Laplace-type integrals

But this last equation states that dV/ds = 0. Since∣∣∣∣dU

ds

∣∣∣∣
2

= |Ux cos θ + Uy sin θ |2 = U 2
x + U 2

y − (Ux sin θ − Uy cos θ)2

= U 2
x + U 2

y − D2,

it is seen that the stationary direction (D = 0) corresponds to a maximum in the
absolute value of the rate of change of U (x, y) with respect to s. Thus a path
V (x, y) = constant is one along which U (x, y) changes the most rapidly.

To obtain a geometrical insight into the nature of such paths we recall some well-
known properties of functions of a complex variable. Since |eλψ(t)| = eλU , we are
interested in the modular surface S defined by U = U (x, y), where the U -axis is
perpendicular to the x, y-plane. A point (x0, y0) on this surface where Ux (x0, y0) =
Uy(x0, y0) = 0 is a stationary point. From (1.2.2) we have Uxx = Vyx and Uyy =
−Vxy , so that

Uxx + Uyy = 0

and U (x, y) is a harmonic function. Then, since the quantity

UxxUyy − U 2
xy = −U 2

xx − U 2
xy < 0,

the stationary point (x0, y0) must be a saddle point. Hence all stationary points on
S can only be saddle points (or cols); the surface S has no maxima 4 and no minima
(except for isolated zeros of ψ(t)). Application of the Cauchy–Riemann equations
again shows that ψ ′(t) = Ux (x, y) + iVx (x, y) = Ux (x, y) − iUy(x, y), so that the
stationary point (x0, y0) must be a saddle point of the phase function ψ(t).

The shape of the modular surface S can also be visualised on the x, y-plane by
constructing the level curves on which U (x, y) = constant. From (1.2.2) it follows
that

Ux Vx + Uy Vy = ∇U · ∇V = 0,

where ∇ ≡ i∂/∂x + j∂/∂y is the two-dimensional gradient operator. Thus the
families of curves corresponding to constant values of U (x, y) and V (x, y) are
orthogonal at all their points of intersection. The regions where U (x, y) > U (x0, y0)

are called hills (or ridges) and those where U (x, y) < U (x0, y0) are called valleys.
The level curve through the saddle, U (x, y) = U (x0, y0), separates the immediate
neighbourhood of the saddle point (x0, y0) into a series of hills and valleys.

To see this topography, let us suppose that ts = x0 + iy0 is a saddle point of order
m − 1 (with m ≥ 2); that is the first m − 1 derivatives of ψ(t) at ts all vanish

ψ ′(ts) = ψ ′′(ts) = · · · = ψ(m−1)(ts) = 0,

4 This can also be seen by application of the maximum-modulus principle.
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1.2 The method of steepest descents 7

with ψ(m)(ts) = Aeiφ , A > 0. Then, if t = ts + reiθ , r > 0, we have

ψ(t) − ψ(ts) = (Arm/m!)ei(mθ+φ) + · · ·
and hence (

U (x, y) − U (x0, y0)

V (x, y) − V (x0, y0)

)
= Arm

m!
(

cos
sin

)
(mθ + φ) + · · ·

in a neighbourhood of ts . The directions of the paths of constant U (x, y) and V (x, y)

are consequently determined by setting the right-hand side of the above expression
equal to zero to find

θ = (k + 1
2δ)

π

m
− φ

m
, δ =

(
1
0

)
(k = 0, 1, . . . , 2m − 1), (1.2.3)

respectively. Therefore, there are 2m equally spaced steepest directions from ts : m
directions of steepest descent and m directions of steepest ascent. In the neigh-
bourhood of ts , the level curves U = U (x0, y0) form the boundaries of m valleys
surrounding the saddle point, in which cos(mθ + φ) < 0, and m hills on which
cos(mθ + φ) > 0. The valleys and hills are situated respectively entirely below and
above the saddle point, and each has angular width equal to π/m.

The steepest paths satisfy sin(mθ +φ) = 0, and so have directions given by (1.2.3)
with δ = 0. The directions of steepest descent at the saddle point ts are therefore

θ = (2k + 1)
π

m
− φ

m
(k = 0, 1, . . . , m − 1; m ≥ 2). (1.2.4)

The topography of the surface S near the saddle point is shown in Fig. 1.1 when
φ = 1

2π for the cases m = 2 (which corresponds to the most commonly occurring
situation of a first-order saddle) and m = 3. We remark that, away from the imme-
diate neighbourhood of the saddle point, the projection of the steepest paths and the
valley boundaries onto the t-plane will, in general, be curved paths.

A typical situation has the contour of integration C in (1.2.1) beginning and ending
at infinity in the valleys (which is necessary for convergence). The contour is then
deformed as far as possible into paths of steepest descent running along the bottoms
of valleys and crossing over from one valley to the next over a saddle point; see
Fig. 1.2. An interesting analogy has been given by De Bruijn (1958, p. 80) in the
form of a person wishing to travel between two points in a mountainous region: if
the two points are in different valleys, then the least effort should involve a passage
via a col. A similar idea is presented in Greene and Knuth (1982, §4.3.3) in relation
to a lazy hiker who will choose a path that crosses a ridge at its lowest point; but
unlike the truly lazy hiker, who would probably choose a zig-zag path, the best path
takes the steepest ascent to the col.

We remark that the determination of the paths of steepest descent in particular
cases can be quite difficult. It is usually a simple matter to locate the saddle points of
a given phase function ψ(t) and the directions of steepest descent away from these
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8 Asymptotics of Laplace-type integrals

(a)

V

V

H

H

(b)

V

H

V

H

V

H

Figure 1.1 Paths of steepest descent and ascent (dashed lines) in the neighbourhood of
the saddle point ts when φ = 1

2 π and (a) m = 2 and (b) m = 3. The shaded regions
denote the valleys (V ) and the unshaded regions denote the hills (H ).

−2 −1 0 1 2

0 1

0

20

40

60
−1

(a)
Re (t)

Im (t)

(b)

1
0

Figure 1.2 (a) The modular surface of F = t−3e3t possessing a saddle point of order
1 (m = 2) at t = 1 and (b) the associated paths of constant Im(F). The heavy line
denotes the steepest descent path through the saddle and the arrows denote the direction
of descent.

saddles. It is also easy to determine the valleys at infinity. What is not so straight-
forward is how the various steepest descent paths connect up with the valleys. Often
an intelligent guess is successful, especially when the variable λ is real. However,
Mathematica can be employed to great advantage in the construction of the paths of
steepest descent. This is the approach we adopt in all the examples in this book.

On a steepest path through a saddle point ts we have

ψ(t) = ψ(ts) − u,

where u is real. Unless this path 5 connects with another saddle or a singularity of
ψ(t), the variable u either increases monotonically to +∞ along a steepest descent

5 A path of steepest descent terminates only at infinity or at singular points of ψ(t).
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1.2 The method of steepest descents 9

path or decreases monotonically to −∞ along a steepest ascent path. In general, the
contour will consist of a series of steepest descent paths, each running from a saddle
point down a valley out to infinity or to a singularity of the phase function ψ(t). This
leads to finding the asymptotic expansion of integrals of the type

eλψ(ts )
∫ T

ts
e−λu f (t) dt,

where T denotes some point on a steepest descent path, and adding the contributions
from each relevant saddle point. The most common situation has T = +∞, although
T can be finite if the integration path encounters another saddle or, of course, if the
original path C in (1.2.1) is finite.

1.2.2 Asymptotic expansion of I (λ)

In this section we determine the asymptotic expansion of the integral

I (λ) =
∫

C
eλψ(t) f (t) dt (1.2.5)

for λ → +∞, where the path C is a steepest descent path that commences at a saddle
point ts of order m −1. The derivation is formal but the expansion process is justified
by a useful result known as Watson’s lemma, which we state and prove in §1.2.4.

We commence by giving the definition of an asymptotic expansion.

Definition 1.1 Let f (z) be a function of a real or complex variable z,
∑

ck z−k

a formal power series (convergent or divergent) and RN (z) the difference between
f (z) and the N th partial sum of the series; that is

f (z) =
N−1∑
k=0

ck z−k + RN (z).

Then, if for each fixed value of N

RN (z) = O(z−N )

as z → ∞ in a certain unbounded region R, we say that the series
∑

ck z−k is an
asymptotic expansion of f (z) and write

f (z) ∼
∞∑

k=0

ck z−k (z → ∞ in R). (1.2.6)

This definition is due to Poincaré (1886). The formal series so obtained is also
referred to as an asymptotic expansion of Poincaré type, or an asymptotic expansion
in the Poincaré sense, or more simply as a Poincaré expansion.

In the integral I (λ) in (1.2.5) we put

ψ(t) = ψ(ts) − u, (1.2.7)
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10 Asymptotics of Laplace-type integrals

where u is non-negative and monotonically increasing as one progresses down the
steepest descent path. This produces

I (λ) = eλψ(ts )
∫ T

ts
e−λu f (t) dt = eλψ(ts )

∫ T ′

0
e−λu f (t)

dt

du
du, (1.2.8)

where T ′ > 0 is the map of T in the u-plane. For large positive λ, the exponential
factor e−λu in (1.2.8) decays rapidly so that the main contribution comes from the
neighbourhood of u = 0. Accordingly, to determine the asymptotic expansion of
I (λ) for λ → +∞, we require the series expansion of f (t)dt/du in ascending
powers of u. This expansion is substituted into the integral (1.2.8) which is then
integrated term by term.

If ts is a saddle point of order m − 1, then

ψ(t) = ψ(ts) −
∞∑

k=0

ak(t − ts)
m+k (1.2.9)

valid in some disc surrounding ts , where ak = −ψ(m+k)(ts)/(m + k)! and a0 �= 0.
Comparison of this expansion with (1.2.7) shows that

u =
∞∑

k=0

ak(t − ts)
m+k . (1.2.10)

If we let u = τm , then for small |t − ts |

τ = a1/m
0 (t − ts)

{
1 + a1

ma0
(t − ts) + 1

m

(
a2

a0
− (m − 1)a2

1

2ma2
0

)
(t − ts)

2 + · · ·
}

,

where a1/m
0 takes its principal value. It follows that τ is a single-valued analytic

function of t in the neighbourhood of ts and that τ ′(ts) �= 0. By the inverse function
theorem (Copson, 1935, p. 121; Jeffreys and Jeffreys, 1972, p. 380) we then have

t − ts =
∞∑

k=1

αkτ
k =

∞∑
k=1

αkuk/m, (1.2.11)

where

α1 = 1

a1/m
0

, α2 = − a1

ma1+2/m
0

, α3 = (m + 3)a2
1 − 2ma0a2

2m2a2+3/m
0

, . . . .

This gives one inversion of (1.2.10); the others are obtained by replacing u in (1.2.11)
by ue2π in , with n an integer satisfying 1 ≤ n ≤ m − 1.

In simple cases it is possible to determine the coefficients αk in closed form by
application of the Lagrange inversion theorem, but this is not practicable in more
complicated cases. This important theorem can be stated as follows (Copson, 1935,
p. 125; Whittaker and Watson, 1952, p. 133; Jeffreys and Jeffreys, 1972, p. 383).
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