HYDRODYNAMICS OF PUMPS

Hydrodynamics of Pumps is a reference for pump experts and a textbook for advanced students exploring pumps and pump design. This book is about the fluid dynamics of liquid turbomachines, particularly pumps. It focuses on special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to problems and cause a significantly different set of concerns from those in gas turbines. These are the potential for cavitation and the high density of liquids, which enhances the possibility of damaging, unsteady flows and forces. The book begins with an introduction to the subject, including cavitation, unsteady flows, and turbomachinery as well as basic pump design and performance principles. Chapter topics include flow features, cavitation parameters and inception, bubble dynamics, cavitation effects on pump performance, and unsteady flows and vibration in pumps – discussed in the three final chapters. The book is richly illustrated and includes many practical examples.

Christopher E. Brennen is Professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at the California Institute of Technology. He has published more than 200 refereed articles and is especially well known for his research on cavitation and turbomachinery flows, as well as multiphase flows. He is the author of *Fundamentals of Multiphase Flows* and *Cavitation and Bubble Dynamics* and has edited several other works.

Hydrodynamics of Pumps

CHRISTOPHER E. BRENNEN

California Institute of Technology

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9781107002371

© Christopher E. Brennen 1994, 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1994 by Oxford University Press Cambridge University Press published 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data
Brennen, Christopher E. (Christopher Earls), 1941–
Hydrodynamics of pumps / Christopher Earls Brennen.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-107-00237-1 (hardback)
1. Pumping machinery–Fluid dynamics. 2. Hydrodynamics. I. Title.
TJ901.B74 2011
621.2'52–dc22 2010043266

ISBN 978-1-107-00237-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Preface pa		<i>page</i> ix	
Nomenclature			xi
1 Introduction		1	
1	1.1	Subject	1
	1.2	Cavitation	1
	1.3	Unsteady Flows	2
	1.4	Trends in Hydraulic Turbomachinery	3
	1.5	Book Structure	4
2 Basic Principles		5	
	2.1	Geometric Notation	5
	2.2	Cascades	8
	2.3	Flow Notation	11
	2.4	Specific Speed	12
	2.5	Pump Geometries	13
	2.6	Energy Balance	14
	2.7	Noncavitating Pump Performance	18
	2.8	Several Specific Impellers and Pumps	19
3 Two-Dimensional Perfo		Dimensional Performance Analysis	22
	3.1	Introduction	22
	3.2	Linear Cascade Analyses	22
	3.3	Deviation Angle	27
	3.4	Viscous Effects in Linear Cascades	28
	3.5	Radial Cascade Analyses	30
	3.6	Viscous Effects in Radial Flows	34

v

CAMBRIDGE

Cambridge University Press 978-1-107-00237-1 - Hydrodynamics of Pumps Christopher E. Brennen Frontmatter <u>More information</u>

vi

Contents

4	Other	Other Flow Features	
	4.1 Introduction		37
	4.2	Three-Dimensional Flow Effects	37
	4.3	Radial Equilibrium Solution: An Example	40
	4.4	Discharge Flow Management	44
	4.5	Prerotation	47
	4.6	Other Secondary Flows	51
5	Cavita	ation Parameters and Inception	55
	5.1	Introduction	55
	5.2	Cavitation Parameters	55
	5.3	Cavitation Inception	58
	5.4	Scaling of Cavitation Inception	62
	5.5	Pump Performance	63
	5.6	Types of Impeller Cavitation	65
	5.7	Cavitation Inception Data	70
6	Bubbl	e Dynamics, Damage and Noise	78
	6.1	Introduction	78
	6.2	Cavitation Bubble Dynamics	78
	6.3	Cavitation Damage	83
	6.4	Mechanism of Cavitation Damage	85
	6.5	Cavitation Noise	88
7	Cavitation and Pump Performance		96
	7.1	Introduction	96
	7.2	Typical Pump Performance Data	96
	7.3	Inducer Designs	102
	7.4	Inducer Performance	104
	7.5	Effects of Inducer Geometry	108
	7.6	Analyses of Cavitation in Pumps	111
	7.7	Thermal Effect on Pump Performance	114
	7.8	Free Streamline Methods	122
	7.9	Supercavitating Cascades	125
	7.10	Partially Cavitating Cascades	127
	7.11	Cavitation Performance Correlations	134
8	Pump Vibration		137
	8.1	Introduction	137
	8.2	Frequencies of Oscillation	140
	8.3	Unsteady Flows	143

Contents

vii

	8.4	Rotating Stall	146
	8.5	Rotating Cavitation	149
	8.6	Surge	151
	8.7	Auto-Oscillation	153
	8.8	Rotor-Stator Interaction: Flow Patterns	158
	8.9	Rotor-Stator Interaction: Forces	159
	8.10	Developed Cavity Oscillation	164
	8.11	Acoustic Resonances	166
	8.12	Blade Flutter	167
	8.13	Pogo Instabilities	169
9	Unstea	ady Flow in Hydraulic Systems	172
	9.1	Introduction	172
	9.2	Time Domain Methods	173
	9.3	Wave Propagation in Ducts	174
	9.4	Method of Characteristics	177
	9.5	Frequency Domain Methods	179
	9.6	Order of the System	180
	9.7	Transfer Matrices	181
	9.8	Distributed Systems	183
	9.9	Combinations of Transfer Matrices	184
	9.10	Properties of Transfer Matrices	184
	9.11	Some Simple Transfer Matrices	188
	9.12	Fluctuation Energy Flux	191
	9.13	Non-Cavitating Pumps	195
	9.14	Cavitating Inducers	198
	9.15	System with Rigid Body Vibration	207
10	Radial	and Rotordynamic Forces	209
	10.1	Introduction	209
	10.2	Notation	210
	10.3	Hydrodynamic Bearings and Seals	214
	10.4	Bearings at Low Reynolds Numbers	215
	10.5	Annulus at High Reynolds Numbers	220
	10.6	Squeeze Film Dampers	221
	10.7	Turbulent Annular Seals	222
	10.8	Labyrinth Seals	229
	10.9	Blade Tip Rotordynamic Effects	230
	10.10	Steady Radial Forces	232
	10.11	Effect of Cavitation	241
	10.12	Centrifugal Pumps	241

viii	Contents
10.13 Moments and Lines of Action	246
10.14 Axial Flow Inducers	249
Bibliography	253
Index	267

Preface

This book is intended as a combination of a reference for pump experts and a monograph for advanced students interested in some of the basic problems associated with pumps. It is dedicated to my friend and colleague Allan Acosta, with whom it has been my pleasure and privilege to work for many years.

But this book has other roots as well. It began as a series of notes prepared for a short course presented by Concepts NREC and presided over by another valued colleague, David Japikse. Another friend, Yoshi Tsujimoto, read early versions of the manuscript and made many valuable suggestions.

It was a privilege to have worked on turbomachinery problems with a group of talented students at the California Institute of Technology, including Sheung-Lip Ng, David Braisted, Javier Del Valle, Greg Hoffman, Curtis Meissner, Edmund Lo, Belgacem Jery, Dimitri Chamieh, Douglas Adkins, Norbert Arndt, Ronald Franz, Mike Karyeaclis, Rusty Miskovish, Abhijit Bhattacharyya, Adiel Guinzburg, and Joseph Sivo. I recognize the many contributions they made to this book.

In the first edition, I wrote that this work would not have been possible without the encouragement, love, and companionship of my beloved wife Doreen. Since then fate has taken her from me and I dedicate this edition to our daughters, Dana and Kathy, whose support has been invaluable to me.

Christopher E. Brennen California Institute of Technology January 2010

Nomenclature

Roman letters

a	Pipe radius
Α	Cross-sectional area
A_{ijk}	Coefficients of pump dynamic characteristics
[A]	Rotordynamic force matrix
Ar	Cross-sectional area ratio
В	Breadth of passage or flow
[B]	Rotordynamic moment matrix
С	Chord of the blade or foil
С	Speed of sound
С	Rotordynamic coefficient: cross-coupled damping
c _b	Interblade spacing
C_{PL}	Specific heat of liquid
С	Compliance
С	Rotordynamic coefficient: direct damping
C_D	Drag coefficient
C_L	Lift coefficient
C_p	Coefficient of pressure
C_{pmin}	Minimum coefficient of pressure
d	Ratio of blade thickness to blade spacing
D	Impeller diameter or typical flow dimension
Df	Diffusion factor
D_T	Determinant of transfer matrix $[T]$
e	Specific internal energy
Ε	Energy flux
Ε	Young's modulus
f	Friction coefficient
F	Force
<i>g</i>	Acceleration due to gravity

CAMBRIDGE

Cambridge University Press 978-1-107-00237-1 - Hydrodynamics of Pumps Christopher E. Brennen Frontmatter <u>More information</u>

xii

Nomenclature

a	Component of a in the s direction
8s h	Specific enthalpy
h	Blade tin spacing
h h	Pitch of a belix
$h_p h T$	Total specific enthalpy
h*	Piezometric head
n H	Total head rise
H(s A t)	Clearance geometry
I	A constic impulse
	Integers such that $\omega/\Omega - I/I$
	Pump impedance
i	Square root of -1
J k	Rotordynamic coefficient: cross-counled stiffness
k kı	Thermal conductivity of the liquid
K K	Rotordynamic coefficient: direct stiffness
K _C	Gas constant
l.	Pipe length or distance to measuring point
L	Lift
L	Inertance
L	Axial length
\mathcal{L}	Latent heat
т	Mass flow rate
т	Rotordynamic coefficient: cross-coupled added mass
m_G	Mass of gas in bubble
m_D	Constant related to the drag coefficient
m_L	Constant related to the lift coefficient
М	Moment
M	Mach number, u/c
M	Rotordynamic coefficient: direct added mass
n	Coordinate measured normal to a surface
Ν	Specific speed
$N(R_N)$	Cavitation nuclei number density distribution function
NPSP	Net positive suction pressure
NPSE	Net positive suction energy
NPSH	Net positive suction head
р	Pressure
p_A	Radiated acoustic pressure
p^{I}	Total pressure
p_G	Partial pressure of gas
ps	Sound pressure level
p_V	Vapor pressure

Nomenclature

xiii

Р	Power
$ ilde{q}^n$	Vector of fluctuating quantities
Q	Volume flow rate (or heat)
\mathcal{Q}	Rate of heat addition
r	Radial coordinate in turbomachine
R	Radial dimension in turbomachine
R	Bubble radius
R	Resistance
R_N	Cavitation nucleus radius
Re	Reynolds number
S	Coordinate measured in the direction of flow
S	Solidity
S	Surface tension of the saturated vapor/liquid interface
S	Suction specific speed
S_i	Inception suction specific speed
S_a	Fractional head loss suction specific speed
S_b	Breakdown suction specific speed
Sf	Slip factor
t	Time
Т	Temperature or torque
T_{ij}	Transfer matrix elements
[T]	Transfer matrix based on \tilde{p}^T, \tilde{m}
$[T^*]$	Transfer matrix based on \tilde{p}, \tilde{m}
[TP]	Pump transfer matrix
[TS]	System transfer matrix
U	Velocity in the <i>s</i> or <i>x</i> directions
<i>u</i> _i	Velocity vector
U	Fluid velocity
U_{∞}	Velocity of upstream uniform flow
υ	Fluid velocity in non-rotating frame
V	Volume or fluid velocity
w.	Fluid velocity in rotating frame
W	Rate of work done on the fluid
Z.	Elevation
Z_{CF}	Common factor of Z_R and Z_S
Z_R	Number of rotor blades
Z_S	Number of stator blades

Greek letters

Angle of incidence

CAMBRIDGE

Cambridge University Press 978-1-107-00237-1 - Hydrodynamics of Pumps Christopher E. Brennen Frontmatter <u>More information</u>

xiv

Nomenclature

α_L	Thermal diffusivity of liquid
eta	Angle of relative velocity vector
β_b	Blade angle relative to cross-plane
γn	Wave propagation speed
Γ	Geometric constant
δ	Deviation angle at flow discharge
δ	Clearance
ϵ	Eccentricity
ϵ	Angle of turn
η	Efficiency
θ	Angular coordinate
θ_c	Camber angle
θ^*	Momentum thickness of a blade wake
Θ	Thermal term in the Rayleigh-Plesset equation
θ	Inclination of discharge flow to the axis of rotation
κ	Bulk modulus of the liquid
μ	Dynamic viscosity
ν	Kinematic viscosity
ρ	Density of fluid
σ	Cavitation number
σ_i	Cavitation inception number
σ_a	Fractional head loss cavitation number
σ_b	Breakdown cavitation number
σ_c	Choked cavitation number
σ_{TH}	Thoma cavitation factor
Σ	Thermal parameter for bubble growth
$\Sigma_{1,2,3}$	Geometric constants
τ	Blade thickness
ϕ	Flow coefficient
ψ	Head coefficient
ψ_0	Head coefficient at zero flow
ω	Radian frequency of whirl motion or other excitation
ω_P	Bubble natural frequency
Ω	Radian frequency of shaft rotation

Subscripts

On any variable, Q:

Q_o	Initial value, upstream value or reservoir value
Q_1	Value at inlet

Nomenclature

xv

Q_2	Value at discharge
Q_a	Component in the axial direction
Q_b	Pertaining to the blade
Q_{∞}	Value far from the bubble or in the upstream flow
Q_B	Value in the bubble
Q_C	Critical value
Q_D	Design value
Q_E	Equilibrium value
Q_G	Value for the gas
Q_{H1}	Value at the inlet hub
Q_{H2}	Value at the discharge hub
Q_i	Components of vector Q
Q_i	Pertaining to a section, <i>i</i> , of the hydraulic system
Q_L	Saturated liquid value
Q_m	Meridional component
Q_M	Mean or maximum value
Q_N	Nominal conditions or pertaining to nuclei
Q_n, Q_t	Components normal and tangential to whirl orbit
Q_P	Pertaining to the pump
Q_r	Component in the radial direction
Q_s	Component in the <i>s</i> direction
Q_{T1}	Value at the inlet tip
Q_{T2}	Value at the discharge tip
Q_V	Saturated vapor value
Q_x, Q_y	Components in the x and y directions
$Q_ heta$	Component in the circumferential (or θ) direction

Superscripts and other qualifiers

On any variable, Q:

\bar{Q}	Mean value of Q or complex conjugate of Q
$ ilde{Q}$	Complex amplitude of Q
<i>Q</i>	Time derivative of Q
Ż	Second time derivative of Q
Q^*	Rotordynamics: denotes dimensional Q
$Re\{Q\}$	Real part of Q
$Im\{Q\}$	Imaginary part of Q