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REAL ANALYSIS THROUGH
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Real Analysis through Modern Infinitesimals provides a course in mathematical
analysis based on internal set theory (IST), introduced by Edward Nelson in
1977. After motivating IST through an ultrapower construction, the book
provides a careful development of this theory, representing each external class as
a proper class. This foundational discussion, which is presented in the first two
chapters, includes an account of the basic internal and external properties of the
real number system as an entity within IST. In its remaining 14 chapters, the
book explores the perspective offered by IST as a wide range of real analysis
topics are surveyed. The topics thus developed begin with those usually
discussed in an advanced undergraduate analysis course and gradually move to
those that are suitable for more advanced readers.

This book may be used for reference, self-study, and as a source for advanced
undergraduate or graduate courses.
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PREFACE

The discrete and the continuous are among the most fundamental categories of the
human mind, and our urge to create theories that connect the two has prompted us
to invent and deploy the infinite set in a monumental intellectual endeavor known
as mathematical analysis.

As a branch of mathematics, analysis has evolved during the last four centuries.
Prior to this time, mathematics was mainly geometry and arithmetic (together
with some algebra). Natural numbers were the primary concepts of arithmetic,
which provided for a quantitative study of discrete phenomena; and straight lines,
curves, surfaces, etc. were the primary concepts of geometry, which provided for
a quantitative study of continuous phenomena. So from a historical point of view,
an understanding of the continuous in terms of the discrete could mean none other
than constructing analytic models of the primary concepts of geometry using the
stuff of arithmetic, which we accomplished under the auspices of our infinite sets.

The familiar real number system is one example of an analytic model of the
geometric line, and the familiar system of the complex numbers is one example
of an analytic model of the plane. Although these number systems are now (as
far as we know) free from contradictions, it is a well-known piece of history that
the construction of a real number system which is not fraught with contradictions
and which represents the geometric line as an assemblage of infinitely many
geometric points while capturing our intuition of its continuity was a formidable
task whose accomplishment was the result of the accumulated contributions of the
most creative minds of our species.

So why was a fitting and flawless analytic model of the line such an elusive
construct? Remember that the concept of a non-denumerable infinite set is char-
acteristic of such models, and infinity was an elusive concept. Indeed, there is
little that is concrete or intrinsically natural about infinite sets yet they are indis-
pensable to constructing analytic models of continuous quantities. This means that
much of our intuition about what appears continuous to us must be represented as
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Xiv Preface

set-theoretical constructs that use infinite sets as building blocks. Many of these
constructs and those obtained from them by higher levels of abstraction are quite
intricate, and the theories we develop as we explore their properties and interrela-
tionships require the employment of logic at levels of syntactical complexity that
rarely occur in other areas of human discourse.

This state of affairs can be ameliorated by upgrading the set-theoretical frame-
work of mathematical analysis so as to allow for a treatment of the subject
that employs the method of modern infinitesimals, or nonstandard analysis. This
upgrading will supplement mathematical analysis with methods that are remark-
ably simple in both conceptual and logical terms.'

The mathematical ideas needed for constructing such upgraded frameworks
are manufactured in an important branch of mathematical logic called model
theory. Model theory is essential for understanding how the basic properties of
these frameworks derive from the manner in which they are constructed. Indeed,
readers who are interested in the foundation of modern infinitesimals should study
model theory.

But this book has a different aim. Our goal here is to explore the applications of
modern infinitesimals in studying the central topics of real analysis. The framework
we need can be described axiomatically without recourse to model theory. The
most widely used axiomatic approach to modern infinitesimals is called internal
set theory (IST),? and we shall avail ourselves of these nonstandard methods by
choosing IST for the foundation of our development. This theory provides a simple
framework for developing modern infinitesimals and can be easily mastered by
readers with no background in mathematical logic.

The book’s introduction provides an overview of how ultrapower constructions
(see Definition 0.5.2) yield structures whose members can be classified as standard
or nonstandard and as internal or external sets. This is used to motivate IST as an
axiomatic description of the class of internal sets in such structures.

The first chapter gives a careful development of IST in which the groundwork
is laid for representing each external class as a proper class. It is worth mentioning
that an axiomatic description of ZFC is subsumed in what we present as the
foundation of our work, for IST is an extension of Zermelo—Fraenkel set theory
(ZFC). The axioms of IST consist of the axioms of ZFC plus three additional
axioms. The first of these — the transfer axiom — is described in Chapter 1. The
other two — the idealization and standardization axioms — together with their basic

! Readers who are interested in the philosophical issues concerning continuity and discreteness are
invited to read an interesting book, The Continuous and the Infinitesimal in Mathematics and
Philosophy, by John L. Bell, Polimetrica 2005, which offers a thorough account of the historical
development of these concepts.

2 IST was introduced by Edward Nelson (Princeton University) in an article published in 1977 in the
Bulletin of the American Mathematical Society, 83, 1165-1198. In the same article, Nelson proved
that a model of IST can be constructed within ZFC. This implies that IST is a consistent theory
provided that ZFC is a consistent theory.
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Preface XV

consequences are taken up in Chapter 2. Also in Chapter 2 we develop the basic
“internal” and “external” properties of the real number system as an entity within
IST.3

In the remaining 14 chapters, we explore the perspective offered by IST as we
survey a wide range of topics in analysis. The topics we discuss begin with those
usually studied in an advanced undergraduate real analysis course and gradually
move to topics that are suitable for more advanced readers. This should appeal to
readers who want to learn how to apply modern infinitesimals by exploring their
role in a great variety of situations.

Going into more detail, the first two chapters are followed by a discussion of real
sequences and series, the topology of the real line, and the analysis of real-valued
functions of a single real variable, including their continuity, differentiability, and
Riemann integrability and the properties of sequences and series of such functions
(with an example of a nowhere-differentiable everywhere-continuous function).
We also give a more extensive discussion of infinite series. This constitutes Part I
of the book.

Part II provides an introduction to point-set topology (including metric spaces
and function space topologies), normed vector spaces, and multidimensional (finite
as well as infinite) differential calculus. In Chapter 10 we discuss the notions of
a basis and subbasis for a topology and use them to introduce the weak topology.
Then we specialize the weak topology to get the product topology, which in turn is
specialized to yield the Euclidean topology on R”. This allows us to obtain some
topological properties of R” as corollaries to theorems concerning the product
topology. Other topics in this chapter include convergence, continuity, compact-
ness (an elegant proof of the Tychonov theorem is included), local compactness,
and connectedness, all in the context of a general topological space. We end Chap-
ter 10 with a brief discussion of monads of filters and prove two important theorems
due to Luxemburg.* In Chapter 11 these topological concepts are explored further
in the special cases of metric spaces and normed vector spaces. The examples
discussed include the space of vector-valued bounded functions under the uniform
norm, £,-spaces with p € [1, oo], and R" under the p-norm. The results proved
include the Cauchy—Schwarz inequality, the Riesz lemma, the Urysohn lemma,
and a discussion is given of the Heine—Borel theorem (including the fact that £, has
anon-compact closed and bounded subset). We close this chapter with a discussion
of the nonstandard concept of the “standard hull” of a class and its application to
the Peano existence theorem. In Chapter 12 we discuss the following: complete
metric spaces; totally bounded spaces; the equivalence of sequential, limit-point,

3 The analytic model of the line — the real number system — that one develops within the framework of
IST has two types of properties: internal and external. Its internal properties are formally identical
with the properties of the ordinary real number system, but its external properties are entirely new
concepts.

4 W. A. J. Luxemburg is Emeritus Professor of Mathematics at the California Institute of Technology.
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Xvi Preface

and covering compactness in a metric space; the consequences of the Lipschitz and
uniform equivalence of metrics; the completion of a metric space; the metrization
of infinite products; Banach spaces; the Holder inequality and Minkowski inequal-
ity for Riemann integrable functions; the completion of normed vector spaces; the
Lebesgue space L ,[a, b] and the Sobolev space W"?[a, b] as the completions of
(Cla, b], +, -, |l - Il ) and (C"[a, b], +, -, || - Il,,m.» ), respectively; and the Daniell
integral on [a, b]. In Chapter 13 we explore some applications of completeness.
The results discussed include: the Baire category theorem and the Baire-Osgood
theorem with applications; the Tietze extension theorem and the continuous exten-
sion of a function that is uniformly continuous on a dense set; and the Banach fixed
point theorem. In Chapter 14 we see that all norms on a finite-dimensional vector
space are equivalent and turn the space into a Banach space and that these spaces
are characterized by the fact that their closed unit balls are compact. Chapter 14
also includes a brief discussion of invertible bounded linear operators with applica-
tions to existence and uniqueness theorems for the Fredholm and Volterra integral
equations. In Chapter 15 we discuss differential calculus on normed vector spaces,
with an emphasis on R” and the finite-dimensional case. This chapter includes a
very detailed nonstandard proof of the inverse function theorem. Finally, in Chap-
ter 16, we consider function space topologies (including compact-convergence
topology and its metrization and compact-open topology and also the connections
between these two topologies), the Stone—Weierstrass theorem with applications,
and some useful versions of the Ascoli theorem, deriving them from a fairly gen-
eral variant of this theorem. There are also four appendices, which are included to
enhance and affirm the book’s character as a self-contained resource.

The text contains more than a thousand exercises. Some are the usual end-of-
section or end-of-chapter exercises and some are placed in the body of the text right
after a definition or a theorem, to encourage the reader to stop and think about what
s/he has just read. These exercises are almost never hard, and hints are provided
where a proof may not be quite straightforward. Most of these exercises should
be regarded as an integral part of the theory being developed, and as such they
should be at least attempted before the reader moves on further in the discussion.
Indeed, some exercises will be referred to later in the text.

The text should be accessible to anyone with a background in undergraduate
mathematics. In fact, the first six chapters of the book have been used many
times here at Western Illinois University (WIU) as a course taken by a mixture
of advanced undergraduate students and beginning graduate students. The back-
ground of the undergraduate students included a course in elementary set theory
and logic intended to prepare students for upper division theoretical courses such
as abstract algebra, real analysis, geometry, and topology. The beginning chap-
ters of the text have also been used as a special topics graduate-level course at
St Cloud State University in Minnesota. [ have also used the material as a one-
semester course at graduate level. In general, to provide a one-semester course,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9781107002029

Cambridge University Press

978-1-107-00202-9 - Real Analysis through Modern Infinitesimals
Nader Vakil

Frontmatter

More information

Preface xXvii

with a strong undergraduate real analysis course as a prerequisite, one can use the
book as follows.

e As a foundation use Chapters 1 and 2 (leaving on one side Sections 2.1-2.10
and focussing on Sections 2.11-2.16) and Sections 3.1, 4.1, 4.3, 5.1, and 5.5.
Some of this material should count as review and some as new. This can all be
covered in about three weeks.

Then, on the basis of this foundation, one can construct a number of different one-
semester courses to be offered as an honors course, an upper-division seminar, a
graduate course, directed reading, or self-study. Here are two examples.

e Sections 10.1-10.6, Chapter 11, Sections 12.1-12.4, and Chapters 14-15.

e Chapters 10-13 and Chapter 16. This selection is suitable for a one-semester
course that emphasizes the application of the methods of infinitesimals to point-
set topology including function spaces.

Some remarks about the way the topics are developed may be helpful. As in
any other analysis course, our principal subject of discussion is the internal theory
of analysis (i.e., analysis in its traditional form as developed by Riemann, Weier-
strass, Lebesgue, Banach, and others). Infinitesimals are served as a side dish
although in fact they are an integral part of the course. Consider, for example, the
notion of continuity. In this book, as in many others, students are first introduced
to this notion through its €4 formulation. Then, in the course of the development of
the notion, one proves several alternative equivalent formulations for it (e.g., one
involving sequences and another involving open sets). Theorems about continuity
can then be proved using any formulation that seems advantageous for the situation
at hand. A difference between this book and other texts is that this set of equivalent
formulations of a given concept also includes one that involves infinitesimals —
our set-theoretical framework allows us to introduce the methods of modern
infinitesimals on the side and use them whenever they are advantageous. Here
is another example: the concept of the Riemann integral is introduced in this
book through its €§ formulation, involving Riemann sums. Then we give an
equivalent formulation involving infinitesimals and use it to prove two other tradi-
tional equivalent formulations, one involving Darboux sums and another involving
measure-zero sets. We use the latter to derive most of the nontrivial properties of
the Riemann integral.

Similarly, for the mathematical structures we discuss we generally use a tradi-
tional method for their construction or description. For example, in Chapter 2 the
system (R, +, -, <) is introduced through its “internal” properties as a complete
ordered field. Hence the reader may rightly regard this system as having the same
properties as the familiar real number system constructed within the ordinary set
theory (ZFC) using, for example, Dedekind cuts or Cauchy sequences of rational
numbers. But we also remind our readers that the properties of this system depend
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not only on its properties as a complete ordered field but also on the properties of
the set-theoretical structure of which it is assumed to be a part. Since IST is an
extension of ZFC, it has features that ZFC lacks. So we can use the extra features
of IST to see that the system (R, 4+, -, <) possesses properties that cannot even
be formulated when the system is assumed to be an inhabitant of ZFC. The same
is true of all the other classical structures, such as R", £, Cla, b], L[a, b], and
W™P[a, b], that we discuss in this book. Each of these structures is defined, in this
text, through its internal properties (i.e., through one of the ways in which they are
usually defined). But, because we regard these structures as entities within IST,
we can associate with them concepts that cannot be formulated in classical terms.

These nonstandard concepts yield new methods which are not only effective
in bringing elegance and economy to the development of mathematical analysis
but also produce interesting new results in various branches of both pure and
applied mathematics. Indeed, the literature on these methods abounds with success
stories in such areas as functional analysis, stochastic analysis, mathematical
economics, and mathematical physics.’ These applications are at once elegant and
sophisticated, for they are based on concepts that are simple as well as powerful.

Modern infinitesimal analysis has, over the past 50 years, evolved into a well-
established approach to the mathematics of the infinite,% but this new paradigm
of mathematics is yet to command the broad attention it merits. The author hopes
that this volume will motivate and facilitate a more widespread adoption of the
methods of modern infinitesimals both in teaching and in mathematical research.’
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