
INTRODUCTION

The mathematicians of the seventeenth and eighteenth centuries used a method
based on the notion of an infinitesimal (an infinitely small number) to create and
develop calculus and mathematical analysis. Although their method was intuitively
appealing and enabled simple arguments and calculations, by the end of the
nineteenth century it had to be abandoned for lack of rigor.

A rigorous development of classical analysis requires a precise definition of the
real numbers, and for this the notion of an infinite set is essential. In this introduc-
tion, we provide some background for these foundational matters of mathematical
analysis.

0.1 Infinite sets and the continuum
Among the most rudimentary operations of the human mind are the acts of consid-
ering a number of entities as a unit and of regarding a single object as composed of
a number of constituents.1 For example, when we use words such as population or
nation we are regarding a number of entities as a unit. Similarly, when we regard
a drop of water as made up of a number of molecules of water or a line segment
as an assemblage of infinitely many points, we are thinking of a single object
as composed of a number of constituents. The intuitive notion of a collection of
elements occurs to us in conjunction with these basic mental activities.

An intellectual feat of the late nineteenth and early twentieth centuries was the
discovery that virtually all known mathematics could be described in terms of ideas
rooted in the intuitive notion of a “collection.” This can be done once our intuitive
understanding of collections and their properties acquires refinement, precision,

1 These are essentially the same mental operations that in other contexts are referred to as synthesizing
and analyzing, respectively.
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2 Introduction

and suitable expansion through a linguistic model. The word set is normally
used in mathematics to refer to any such modified version of the intuitive notion
of a collection. Indeed, such modifications have yielded sophisticated linguistic
frameworks that serve as the foundations of mathematical and other scientific
theories.

Each such foundational framework is called a set theory. There is a core com-
mon to most set theories, known as elementary set theory. The essential part of
elementary set theory is concerned with the development of a language which, by
being cast in symbols, endows with precision our intuitive understanding of the
properties of collections. Most educated people today are expected to have some
familiarity with elementary set theory.

More sophisticated theories of sets are obtained as we begin to expand our
raw notion of a collection by assigning to it properties that may go beyond what
is clearly possessed by physical or concrete examples of collections. But this
transcendence entails controversies. One important controversy in the history
of mathematics concerns the assumption that collections with infinitely many
elements have actual (as opposed to potential) existence. One may argue, for
example, that our ordinary experience of the physical world hardly informs us of
the existence of such collections. Physicists tell us that even the whole universe
consists of only finitely many particles.

So what makes us think of infinite sets? We may answer this question in one
word – a continuum. We perceive the physical world in terms of time and space,
which the mind grasps as continua. Herein lies the origin of geometric concepts
such as straight lines, curves, planes, and surfaces. Such geometric concepts have
historically been called continuous quantities. One fruitful method of studying
continuous quantities is through the analytic models that we construct for them.
The notion of an infinite set in its naı̈ve form naturally occurs to us as we attempt
to construct such models.

But it is one thing to be in possession of a raw idea, and quite another to define
an impeccable mathematical concept that can blossom into a sophisticated theory.
Indeed, in its naı̈ve form the notion of an infinite set has been around since ancient
times. But we were not in possession of a rigorous mathematical theory of infinite
sets until the turn of the twentieth century. And, when this happened, the result
came to be regarded as a watershed moment in the progress of rational thought.
Such is the status of infinite sets in the mathematics of our time.

0.2 An analytic model of the straight line
It is a disposition of the human mind to understand things analytically. We take
an object, separate it into what we think to be its principal elements, and then
reconstruct it in terms of those elements. The question arises:
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0.2 An analytic model of the straight line 3

If we are to analyze the geometric line into its principal elements, what should
the principal elements be?

The ancients had thought of the geometric line as an assemblage of infinitely
many geometric points until it was realized by some, especially Zeno of Elea
(5 bc), that their conception of the infinite was too naı̈ve to make the notion
suitable for building a non-contradictory analytic model of the line. In other
words, constructing an analytic model of the line which captures its continuity
while representing it as an assemblage of infinitely many geometric points was
a task too intricate for the intellect of the times to handle. Thus infinite sets as
conceptual tools of model building acquired a controversial status, which persisted
for about 24 centuries.

It was not until the turn of the twentieth century that a positive attitude towards
infinite sets began to be adopted by the vast majority of mathematicians. This
followed a series of important developments in the nineteenth century. In 1888,
using the already known device of one-to-one correspondence, Richard Dedekind
(1831–1916) gave a precise definition of an infinite set. To wit, he called a set A

infinite if it has a proper subset B that can be put into one-to-one correspondence
with A. Then Georg Cantor (1845–1918) developed an abstract theory of sets
in which the groundwork was laid for widespread acceptance of infinite sets as
legitimate mental constructs that can serve as building blocks of various math-
ematical concepts. Cantor’s development was later given a rigorous axiomatic
treatment, in what is now called Zermelo–Fraenkel set theory, with the axiom of
choice. This is a rich conceptual structure within which we can develop virtually
the entire known mathematics. In particular, an analytic model of the straight line
can be constructed within this structure. This model, which represents the line
as an assemblage of infinitely many points while capturing its continuity, is, of
course, none other than what we call today the standard theory of the real num-
bers and denote (R,+, ·,<). This system was developed in the second half of the
nineteenth century independently by Karl Weierstrass (1815–1897), Georg Can-
tor, and Richard Dedekind. Their methods were different but produced equivalent
structures, all using infinite sets as their building blocks.

Analytic models of the straight line, such as the familiar real number system,
provide the foundation of mathematical analysis, which is in part the result of
attempts to provide analytic theories of such basic intuitive notions as continuity
and smoothness. The physical world around us may contain no straight lines,
continuous curves, or smooth surfaces. But that does not matter. Our mathematical
theories – our mental linguistic constructs –, which have risen from intuitive
concepts such as these, have served us remarkably well as conceptual frameworks
within which useful models of various aspects of the physical world can be (and
have been) built. This point is much in evidence in the myriad applications of
mathematical analysis. For example, we use the system (R,+, ·,<) to model
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4 Introduction

Newtonian time, the system (R3,+, ·) to model Newtonian space, and the system
(R4,+, ·) to model Minkowski spacetime, which provides for the representation
of physical entities conceived within Einstein’s general theory of relativity. Indeed,
today the student of classical mechanics needs to master the subject of analysis
on finite-dimensional vector spaces, the student of quantum mechanics needs
to master the subject of analysis on infinite-dimensional vector spaces, and the
student of economic theory needs to master both.

0.3 The rise and fall of infinitesimals
In the sixteenth and seventeenth centuries there was an irrepressible urge among
mathematicians to apply analytic methods in the study of continuous quantities.
Thinking of a line or a curve as an assemblage of infinitely many points was
still not an idea they could employ with confidence. Such analytic models faced
objections such as these:

How can a continuous object (such as a line segment), which has a nonzero
magnitude, be reconstructed from points, which have zero magnitude? How
can a geometric object (such as a plane) be assumed without contradiction
to have been constructed from objects of lower dimensions (such as lines or
points)?

Unable to overcome such hurdles, the mathematicians of the seventeenth century
appealed to alternatives such as thinking of a continuous object as composed of
an infinity of infinitesimal parts (the parts being of the same kind as the whole)
or thinking of, for example, a curve as generated by the continuous motion of a
point. Johannes Kepler (1571–1630) regarded a circular region as an infinity of
infinitesimal triangles with a common vertex at the center and a spherical region
as an infinity of pyramids with a common vertex at the center. Leibniz (1646–
1716), one inventor of calculus, used the term differential and the corresponding
symbol dx to refer to an infinitely small change in x. Using this notion he defined
the derivative as the quotient dy

dx
and the integral as the sum of infinitely many

infinitesimals ydx. These were, in turn, applied to solve the geometric problems
of determining tangents, areas, and volumes. Newton (1642–1727) referred to a
(continuous) variable x as a fluent, thinking of it as a quantity that is in continuous
flow. He referred to its (instantaneous) rate of change as a fluxion and used the
symbol ẋ to denote it. He also used the symbol “o” to denote an infinitely small
quantity of time. This led him to the notation ẋo for an infinitesimal change in x.
Using these ideas, Newton was able to develop calculus (independently of Leibniz)
and use it to account for Kepler’s laws describing the motions of the planets.

The method of infinitesimals was a boon to its practitioners. It appealed to their
intuition, simplified their calculations, and brought resolution to many hitherto
inaccessible problems. However, just as the ancient Greeks had been unable to
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0.4 The return of infinitesimals 5

imbed their infinite sets in a theory that was free from the known paradoxes,
so the mathematicians of the seventeenth and eighteenth centuries were unable to
give a rigorous treatment of their infinitesimals. This led, in the latter part of the
nineteenth century, to a revolution in the foundations of calculus, in the course
of which infinitesimals were banished from mathematics for want of a sound
logical standing. By the leadership of Weierstrass, the term limit defined in terms
of εδ statements replaced the term “infinitesimal” in the definition of concepts
as well as in arguments; and, as mentioned earlier, a rigorous theory of the real
numbers (devoid of the terms infinitely small and infinitely large) was developed
by Cantor, Dedekind, and Weierstrass. Thus, since the latter part of the nineteenth
century the εδ method has become the standard method of defining concepts
and proving theorems in analysis and the Cantor–Dedekind–Weierstrass number
system (R,+, ·,<) has become the standard analytic model of the straight line.

0.4 The return of infinitesimals
Fortunately, it did not take too long for the ban on infintesimals to end. The
intuitive appeal and simplicity of this notion kept it alive in the minds of some
mathematicians during the twentieth century. The attempts to reinstate infinites-
imals as legitimate concepts came to a definitive conclusion in the discovery of
nonstandard analysis by Abraham Robinson (1918–1974). Robinson’s nonstan-
dard analysis, which is the result of a sophisticated application of the concepts
and methods of contemporary mathematical logic, was introduced in 1960–1961
when Robinson was a professor of mathematics at the University of California,
Los Angeles, and the Institute of Advanced Studies at Princeton. Robinson’s first
book on the subject published by North-Holland, appeared in 1966 under the title
Non-Standard Analysis.

Nonstandard analysis (NSA) provides a rich framework for the mathematics of
the infinite. The analytic models of continuous quantities that can be constructed
within this framework capture at once both the intuition of the ancient Greek
mathematicians and that of the mathematicians of the seventeenth century. It
provides for the construction of a new real number system (∗ R,+, ·,<) that not
only represents the line as an assemblage of infinitely many points (as the Greeks
had done) but also enables us to visualize the line as containing points that are
infinitely close and also points that are infinitely far apart (which accommodates
what Leibniz, Newton, and their followers had ideated).2 The system (∗ R,+, ·,<),

2 It is of historical interest to note that Leibniz, Newton, and their followers thought of a continuous
quantity, say, a line segment, as something that could be partitioned into an infinity of smaller
line segments each having an infinitesimal length; while this idea can be accommodated within
Robinson’s analytic model of the line, it is not the same as the latter. In fact, they tried to avoid
thinking of a continuous quantity as an assemblage of infinitely many points, for they did not know
how to handle the paradoxes associated with such conceptions. The notion of a non-denumerable
infinite set (which is essential for such analytic models of continuous quantities) was not available
then.
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6 Introduction

Figure 0.1 Robinson (left) and Luxemburg at the 1970 conference on NSA at
Oberwolfach (Photographs courtesy of Ron Luxemburg, photography by Pasadena,

Los Angeles, http://rlux.com.).

as the new foundation of mathematical analysis, is preferable to the standard
system because it allows us to study the continuity, smoothness, and measurement
of areas and volumes (and numerous other concepts obtained by generalizing
these) through theories that appeal to our intuition and have simpler syntactical
structures.

The system (∗ R,+, ·,<) is a linearly ordered field that contains infinitely small
and infinitely large numbers as well as an isomorphic copy of the standard system
of the real numbers, (R,+, ·,<). The first such system was discovered by Edwin
Hewitt (1920–1999) while he was studying residue class fields of continuous
functions modulo free maximal ideals.3

Today we use an equivalent technique based on what is called a free ultrafilter.
This technique was first used by W. A. J. Luxemburg (one of the co-founders
of nonstandard analysis) in his early (1960–1962) lectures on NSA at California
Institute of Technology; see Figure 0.1. This method of constructing the sys-
tem (∗ R,+, ·,<) is discussed briefly in Section 0.5 below. As mentioned earlier,
Robinson’s original presentation of NSA was based on certain ideas from the
field of mathematical logic that are not very familiar to most mathematicians.
Luxemburg adapted nonstandard analysis to suit the modes of thinking of a wider
community of mathematicians. This, and his many other contributions to NSA,

3 Edwin Hewitt, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. 64 (1948), 54–99.
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0.5 Ultrafilters and ultrapowers 7

expedited the spread and further development of the methods of modern infinitesi-
mals.4 Among Luxemburg’s widely quoted works on NSA, one might mention his
article A general theory of monads, in Applications of Model Theory to Algebra,
Analysis, and Probability, edited by Holt, Reinhart and Winston, 1969.

0.5 Ultrafilters and ultrapowers
In the remaining of this introduction, we provide a brief overview of how ultrafilters
may be used in constructing structures that allow a rigorous discussion of modern
infinitesimals.

0.5.1 Definition (Ultrafilters)5 A family U of subsets of the positive integers Z+

is called a free ultrafilter on Z+ if it satisfies the following conditions:

1. ∅ /∈ U ;
2. if A,B ∈ U then A ∩ B ∈ U ;
3. if A ∈ U and B is a subset of Z+ that contains A then B ∈ U ;
4. if S ⊆ Z+ then S ∈ U or S ′ = {x ∈ Z+ : x /∈ S} ∈ U ;
5. no finite subset of Z+ belongs to U .

Now let X be any infinite set, and let X Z+
be the set of all the sequences (an)

in X . We define an equivalence relation ≡ on X Z+
by writing (an) ≡ (bn) if and

only if {n ∈ Z+ : an = bn} ∈ U . It is easy to see that ≡ is indeed an equivalence
relation. For example, to prove reflexivity (i.e., (an) ≡ (an) for all (an) ∈ X Z+

),
we must show that {n ∈ Z+ : an = an} ∈ U . This is an immediate consequence
of conditions 1 and 4 of Definition 0.5.1 since the set {n ∈ Z+ : an = an} is none
other than the entire set Z+.

0.5.2 Definition The set X of all the equivalence classes of X Z+
that are induced

by ≡ is called an ultrapower of X . For each x ∈ X the equivalence class
[(x, x, x, . . .)] of the constant sequence (x, x, x, . . .) is denoted by ∗x. An ele-
ment x ∈ X is called standard if there is an x ∈ X such that x = ∗x. The rest
of the elements of X are called nonstandard. The collection of all the standard
elements of X is denoted by σ X. Theorem 0.5.4 gives the condition that guarantees
the existence of nonstandard elements in X.

0.5.3 Remark The symbol ∗ X is an alternative notation for X. We shall use
this symbol particularly to denote an ultrapower ∗ R of the set of the ordinary real
numbers R.

0.5.4 Theorem Let X be an ultrapower of the set X . If X is infinite, then X has
nonstandard elements.

4 For further remarks see Abraham Robinson, the Creation of Nonstandard Analysis, a Personal and
Mathematical Odyssey, J. W. Dauben, Princeton University Press (1995), pp. 394–396.

5 A proof of the existence of free ultrafilters requires the axiom of choice.
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8 Introduction

Proof Since X is infinite, there is a sequence (an) in it whose terms are distinct.
Let α = [(an)]. We claim that α /∈ σ X. That is, (an) does not belong to the equiva-
lence class of any constant sequence (x, x, x, . . .). To see this, fix x ∈ X . Since the
set S = {n ∈ Z+ : x = an} has at most one element by condition 5 of Definition
0.5.1, we have S /∈ U . This means that (a1, a2, a3, . . .) and (x, x, x, . . .) are not
related by ≡. Hence α �= ∗x. �

Now fix a free ultrafilter U on Z+, and let ∗ R denote the ultrapower of R that
is obtained by means of U . For convenience, for each sequence (an) in R, let its
equivalence class [(an)] be denoted by the boldface symbol a.

0.5.5 Definition Given a, b, c ∈ ∗ R, we write:

a = b iff (an) ≡ (bn);
a + b = c iff (an + bn) ≡ (cn);
a · b = c iff (an · bn) ≡ (cn);
a < b iff {n ∈ Z+ : an < bn} ∈ U .

0.5.6 Hyperreal number system The system (∗ R,+, ·,<) that we have just
defined is referred to as a hyperreal number system. It is a linearly ordered
field, and contains an isomorphic copy of the system (R,+, ·,<).6 This iso-
morphism assigns to each a ∈ R the equivalence class a = [(a, a, a, . . .)]. The set
∗ R has unlimited elements (or elements with infinitely large magnitudes). Such ele-
ments have absolute values that are greater than every positive element of σ [∗ R].
For example, if ω = [(1, 2, 3, . . .)] then we have ω > a for all a ∈ σ [∗ R] since
{n ∈ Z+ : n > a} ∈ U for each a ∈ R. The reciprocals of unlimited numbers are
infinitesimals. Thus, for example,

1

ω
=

[(
1,

1

2
,

1

3
, . . .

)]

is an infinitesimal – it is smaller than every standard positive number in ∗ R. Two
numbers a, b in R are infinitely close, which is written as a � b, if |a − b| is an
infinitesimal. Our new real number system allows us to visualize the geometric
line as in Figure 0.2.

0.6 What is internal set theory?
To do mathematical analysis with the help of infinitesimals, we need much more
than just an ultrapower of R. Indeed, a framework that turns out to be adequate for

6 A proof of this statement can be found in An Introduction to Nonstandard Analysis (p. 5), by Albert
E. Hurd and Peter A. Loeb, Academic Press, 1985.
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0.6 What is internal set theory? 9
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Figure 0.2 Infinitesimals viewed through a microscope.
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Figure 0.3 Superstructures over R and ∗ R.

virtually every mathematical construction is the result of a sophisticated ultrapower
construction involving superstructures, which are defined as follows.

0.6.1 Definition Given an infinite set X, the superstructure V (X) on X is the set
V (X) = ⋃∞

n=0 Vn, where (Vn) is defined recursively as:

V0 = X, Vn = Vn−1 ∪ P(Vn−1), n ≥ 1.

Here P(Vn−1) is the set of all the subsets of Vn−1.

The set V (R) contains a representation of virtually any object discussed in
the traditional treatments of mathematical analysis; furthermore, virtually any
construct that provides for an application of modern infinitesimals in analysis has
a representation within V (∗ R). We may picture this as in Figure 0.3.

To employ the methods of modern infinitesimals in analysis, one needs to be well
versed not only in the properties of such ultrapowers as ∗ R, ∗ Rn, and Lp(∗ Rn) but
also in the interplay between the two structures V (R) and V (∗ R). The theory that
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10 Introduction

Figure 0.4 Edward Nelson.

describes7 this interplay employs sophisticated ideas from model theory (a branch
of mathematical logic) and might be difficult for someone without a background
in that subject. This situation has motivated attempts to find approaches to NSA
that are even simpler than that established by Luxemburg.

Among these attempts, the most successful has been Edward Nelson’s axiomatic
approach, which is called internal set theory (IST). Edward Nelson (Figure 0.4)
is a contemporary mathematician currently working at Princeton University. His
original account of IST was published under the title Internal set theory, a new
approach to nonstandard analysis, in the Bulletin of the American Mathematical
Society 83 (1977), 1165–1198. He showed, in this article, that a model of IST can
be constructed within ZFC. Internal set theory is quite easy to master, as the reader
will soon see.

To gain a sense of what IST describes, we need to know a little more about what
is going on inside V (∗ R). This is discussed next.

0.7 Internal, external, and standard sets
In this section, we provide an overview of the kind of structure that internal set
theory describes axiomatically. Let X = V0 ∪ V1 ∪ V2, where

V0 = R, V1 = V0 ∪ P(V0), and V2 = V1 ∪ P(V1).

As examples of elements of X , one could mention the number a = 2, the open
interval A = (0, 3), and the family A = P((0, 3)) of all the subsets of the interval
(0, 3). Notice that a ∈ A ∈ A.

Now fix a free ultrafilter U on Z+, and let X be the ultrapower of X that
corresponds to U .

7 See p. 70 of An Introduction to Nonstandard Analysis, by Albert E. Hurd and Peter A. Loeb,
Academic Press, 1985.
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