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The Gravitational Field

This chapter is aimed at introducing in an elementary yet rigorous way the mathematical

properties of the Newtonian gravitational field – the basic entity – together with the Second

Law of Dynamics, upon which stellar dynamics is founded. We begin from the gravitational

field of a point mass, and then we move to consider the field of extended mass distributions

by using the superposition principle. A direct proof of Newton’s first and second theorems

for homogeneous shells is worked out, followed by a different derivation based on the

Gauss theorem.

1.1 The Gravitational Field of a Point Mass

and of Extended Distributions

The understanding of the structure, equilibrium, and dynamical evolution of stellar systems

(to be understood in a broad sense, ranging from small galactic open clusters up to giant

clusters of galaxies) in terms of the fundamental physical laws, and in particular of classical

gravity, is the main subject of stellar dynamics. Stellar systems are immense when com-

pared to the human scale, and so a sense of the astonishing values of the masses, lengths,

and times involved is absolutely necessary, especially for students of sister disciplines

such as mathematics or physics, who may lack a specific background in observational

astronomy.

So, let us start by considering our Sun, a yellow G-dwarf star (but not at all “dwarf”

when compared to the masses and sizes of the vast majority of the N∗ ≈ 3 × 1011 stars

present in our galaxy, the Milky Way), with a mass of M⊙ ≃ 1.98 × 1033 g and a radius

of R⊙ ≃ 7 × 1010 cm. The shape of our galaxy is that of a quite flattened disk, with a

radius of ≈ 26 kpc (1 kpc = 103 pc = 3.08 × 1021 cm), a central “bulge,” and a disk

thickness of ≈1 kpc. The Sun rotates around the galactic center on an almost circular orbit

of radius ≈8 kpc within the galactic disk. Detailed information about our galaxy and other

stellar systems can be found in books such as Bertin (2014), Bertin and Lin (1996), Binney

and Merrifield (1998), Binney and Tremaine (2008), Cimatti et al. (2019), and Sparke and

Gallagher (2007). To appreciate these figures in their full glory, it is useful to construct a

scaled-down model of the Milky Way, such as one in which the Sun is imagined as a little

sphere of ≃ 0.7 mm radius; in this model, all lengths are reduced by a factor of 10−12.
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4 The Gravitational Field

The Earth is now an invisible grain of dust, the radius of the Moon’s orbit is ≃0.4 mm,

while the Earth’s orbit is an (almost circular) ellipse with a semimajor axis of ≃15 cm.

The giant planets Jupiter, Saturn, Uranus, and Neptune rotate around the Sun at average

distances of 0.78 m, 1.40 m, 2.87 m, and 4.50 m, respectively. On this scale, the nearest

star (actually a multiple star, the Alpha Centauri system) is placed at ≈41 km from our Sun,

the thickness of the Milky Way disk is ≈3 × 104 km, and its diameter is ≈1.6 × 106 km!

The Sun would revolve around the galactic center on a roughly circular orbit with a radius

of ≈2.5 × 105 km at a velocity of ≈2.1 × 10−4 mm/s (i.e., ≈0.8 mm/hr) and a period1 of

≈230 Myr (corresponding to a physical circular velocity of ≈220 km/s).

Therefore, it should not be surprising that, with extremely good approximation, in most

(but not all) applications of stellar dynamics, stars can be considered point masses (see

also Exercise 1.1). We then start our study quite naturally by considering the gravitational

field of a point mass. Notice that the relevance of this case goes well beyond the point-

mass approximation of stars in galaxies because, as the gravitational field produced by a

generic mass distribution is given by the sum of the fields produced by each of its parts,

the point masses that will be used in the next two chapters can also be interpreted as atoms

or molecules when computing the gravitational field produced by a macroscopic material

object!

The starting point of Newtonian gravity is the definition of the gravitational field g, at

position x, produced by a material point of mass m at position y in some reference system

S0. Empirically, it is found that the field is radial, with

g(x) = −Gm
x − y

||x − y||3
, (1.1)

where G ≃ 6.67 × 10−8 cm3/s2g is the universal gravitational constant, ‖ . . . ‖ =√
〈. . . , . . .〉 is the standard Euclidean norm, and 〈 , 〉 is the usual inner product over

ℜ3 (see Appendix A.1); from now on we indicate vectors with bold letters, if not stated

otherwise. Note that the field is not defined at the particle position and that g(x) depends on

time through the position of the particle y(t): the classical gravitational field “propagates”

instantaneously over all of the space. Equation (1.1), formally identical to that describing

the electrostatic field produced by a point charge, encapsulates the two most important

properties of the gravitational field of a point mass (i.e., the fact that the modulus of the field

decreases radially as the inverse of the square distance from the particle and the fact that

the force between two particles is attractive). The third fundamental property of classical

gravity, confirmed by an enormous body of experimental evidence (a point unfortunately

not always sufficiently stressed; however, see e.g. Feynman et al. 1977 among the notable

exceptions), is the superposition principle (i.e., the fact that the gravitational field produced

at the point x by two point masses of masses m1 and m2 placed at y1 and y2 is the vector

1 For order-of-magnitude estimates, it is useful to recall that 1 yr ≃ π × 107 s, and that a velocity of 1 km/s corresponds to

≃1 pc/Myr.
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1.2 Newton’s First and Second Theorems 5

sum g1(x) + g2(x) of the two fields). As a matter of fact, the whole theory of classical

gravitation can be built from Eq. (1.1) and the superposition principle.

For example, the gravitational field produced at x by an extended mass distribution of

density ρ(y), such as a star, a planet, or a galaxy, can be immediately written as

g(x) = −G

∫

ℜ3

x − y

‖x − y‖3
ρ(y)d3y, (1.2)

where ρ(y)d3y is the mass element in the infinitesimal integration volume d3y and the

integral (a sum) embodies the superposition principle. Of course, in the special case of N

point masses of mass mi and position xi , one can define

ρ(y) =
N

∑

i=1

miδ(y − xi), (1.3)

where δ is the so-called Dirac δ-function (actually a distribution; see Appendix A.2.5), and

so Eq. (1.2) reduces to a standard sum, as expected from Eq. (1.1).

The student should appreciate that, in principle, Eq. (1.2) contains all of the informa-

tion we need to determine the gravitational field of a given density distribution. In other

words, Eq. (1.2) is the general solution of the problem of the calculation of the Newtonian

gravitational field produced by an assigned mass distribution ρ: one could conclude that

the only problem to be addressed is just how to calculate (analytically or numerically) the

integral (1.2) in all of the cases of interest. However, this conclusion would be very wrong.

In fact, the most profound properties of the gravitational field cannot be derived by simple

evaluation of Eq. (1.2), and (as is common in physics) the defining equations of a problem

invariably contain much more information than the solution itself. For these reasons, we

now start from the “solution” given by Eqs. (1.1) and (1.2), and we look for the differential

equations leading to this solution. Significant effort will then be spent in the study of the

properties and implications of the obtained equations, and this effort will be repaid by the

discovery of powerful mathematical methods that will lead us to a deep understanding of

the gravitational field produced by mass distributions and, finally, as a useful by-product,

to general techniques for the evaluation of Eq. (1.2).

1.2 Newton’s First and Second Theorems

One of Newton’s major accomplishments was the discovery of the first and second theorems

concerning the gravitational fields produced by spherical and homogeneous material shells.

Usually, the two theorems are proved by using the Gauss divergence theorem, as we will

also do in Section 1.3. However, due to their importance, here we prove them from direct

integration of Eq. (1.2), in the original spirit (while avoiding the subtleties of Newton’s

awe-inspiring geometric proof; e.g., see Binney and Tremaine 2008; Chandrasekhar 1995).

The first step is to show that the gravitational field produced by a generic spherical

density distribution ρ(r) is radial. This is accomplished by arbitrarily fixing a point of
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6 The Gravitational Field

space x, by defining the direction of the z-axis so that2 x = (0,0,r), and finally by changing

the integration variables from Cartesian to spherical in Eq. (1.2). Integration over the angles

(do it!) proves that the resulting field g is directed along the z-axis (i.e., along x) and

hence is radial. The second step is to specialize the density distribution ρ to the case of

a homogeneous and infinitesimally thin shell of radius R and total mass M , so that from

Eq. (A.97)

ρ(y) =
Mδ(r − R)

4πr2
, r ≡ ‖y‖. (1.4)

From the radial symmetry of the field, we can proceed to the explicit integration of the

z-component of g at x = (0,0,r), and after some algebra (see also Exercise 1.2), we finally

obtain

g(x) = −
GM

2r2

(

1 +
r − R

|r − R|

)

fr, r �= R, (1.5)

where fr is the radial unit vector in spherical coordinates (see Appendix A.8). It follows that

for r < R no field is present (Newton’s first theorem), while for r > R the field coincides

with that produced by a material point of mass M , placed at the origin (Newton’s second

theorem).

A somewhat delicate situation arises when considering the field produced by the shell

on itself (i.e., at r = R). In fact, it is clear from Eq. (1.5) that the function g(x), evaluated as

a limit for r → R, is discontinuous, with different left and right values. A natural question

that arises is how to compute the field on the shell itself. Naively, a “reasonable” approach

could be to fix r = R before performing the integral over the surface of the shell and to

pretend that for symmetry reasons the integral over the azimuthal angle ϕ is to be performed

before the integral over the colatitude ϑ . With this approach, we deduce that a point on the

shell experiences a radial force per unit mass given by

g(x) = −
GM

2R2
fr, (1.6)

the average value of Eq. (1.5) just inside and just outside the shell. However, a closer

inspection of the integral reveals a more delicate situation (i.e., that the tangential compo-

nent of g to the shell cannot be uniquely defined). For example, the student is encouraged to

calculate the tangential component of g(0,0,R) with a different order of integration from

the “natural” one (i.e., by fixing the angle ϕ) and integrating first over 0 ≤ ϑ ≤ π : the

tangential component of the field now diverges for ϑ → 0 (i.e., for the effect of the points

of the material meridian line touching the point x). Technically, the problem is due to the

fact that, in the present case, the integral in Eq. (1.2) is not absolutely convergent, and

the result depends on how the integral is computed. Here, the lesson is that, as a safety

2 For simplicity, vectors are represented in the text as row vectors. See also Footnote 1 in Appendix A.
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1.3 The Gauss Theorem and the Gravitational Field 7

rule, symmetry arguments should be used to evaluate integrals only after the integrals are

known to converge.3

1.3 The Gauss Theorem and the Gravitational Field

An alternative and more elegant derivation of Newton’s first and second theorems can be

obtained by using the Gauss divergence theorem (see Appendix A.4). However, before

addressing this problem in Section 1.3.1, we must establish a few fundamental properties

of the gravitational field.

We start by considering the application of the Gauss theorem to the gravitational field of

a point mass, and so we evaluate first the divergence of the gravitational field in Eq. (1.1).

It is a simple exercise (do it!) to show that for all x �= y, the divergence of the field

at x vanishes (the student may also wish to prove, by using the divergence operator in

spherical coordinates, that the radial 1/r2 field is the only radial field in ℜ3 with this

property). Therefore, from the Gauss theorem, it follows that the flux of the gravitational

field produced by a point mass across a generic closed surface ∂�, not containing the point

mass, is zero. From the superposition principle, this conclusion immediately generalizes to

the case of the flux of the field g produced by an arbitrary mass distribution placed outside

the closed surface ∂�.

Now, let us ask what happens to the flux if the point mass is inside the region �.

Clearly, being div g = 0 for x �= y, according to Eq. (A.112), the only possible nonzero

contribution of the divergence to the flux integral can be due to what happens at the point

x = y. We face two problems here. The first is that we cannot compute div g for x = y,

simply because the field is not defined there. The second is even more worrisome because

from a naive interpretation of integration theory, one could expect that the volume integral

evaluates to zero even if we pretend that the “value” of div g at x = y is infinite, being a

point of a set of zero measure. This would be in stark contrast to the fact that at this stage

we can certainly imagine a region containing the point mass with a shape such that the total

flux is strictly negative! The only logical conclusion is that the flux is not zero and that

integration theory is (obviously) correct, but that div g for x = y is a more “complicated”

object than a function with infinite value: we now show that this is the case. The idea is

borrowed from complex analysis, and it substitutes into our problem a different problem

that we can solve. So, as is shown in Figure 1.1, we remove from � a spherical region

of radius R centered on y, and we produce a two-dimensional “cut” (the dashed line c in

Figure 1.1) connecting the surface of the inner hole with the external surface ∂�. With

the exclusion of the spherical hole, our particle is now outside the resulting region, so that

3 Perhaps the most famous such case is encountered in the computation of the Jeans mass (e.g., see Binney and Tremaine 2008;

Shu 1992), when fixing to zero (the so-called Jeans swindle) the gravitational field produced by the unperturbed, infinite, and

homogeneous three-dimensional density background. In fact, instead of integrating over spherical shells centered on the point

of interest (with the result of a zero field from Newton’s first theorem), we could integrate over parallel density slabs of unitary

thickness, at the left and right of the point, obtaining a conditionally convergent alternating series (do it!); see also Exercise 1.8

for another example. A full discussion of the conditions for the existence of integral (1.2) can be found in Kellogg (1953).
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8 The Gravitational Field
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Figure 1.1 Schematic illustration of how, by using the divergence theorem, we can prove that the

flux of the gravitational (or electrostatic) field of a particle of mass m (or charge q) contained in a

closed and regular (but otherwise arbitrary) region � ⊂ ℜ3 is −4πGm (or q/ǫ0), independently of

the position of the particle inside the volume. The dashed line indicates a generic two-dimensional

“cut” with two opposite normals, one for each of the two sides of the cut.

the flux of g through the total boundary (made by the original ∂�, by the surface of the

spherical hole, and by the two geometrically coincident but analytically distinct surfaces of

the cut c) evaluates to zero. Therefore, from the divergence theorem, the flux of g through

∂� is simply the negative of the flux on the inner spherical hole, because the flux on the

two surfaces of the cut cancels out. By reversing the normal at the surface of the hole and

performing the surface integral by exploiting the spherical symmetry of g, it is now simple

to show (do it!) that the flux on the hole,4 and so onto ∂�, is −4πGm.

In conclusion, by using the Gauss theorem applied to the special case of the three-

dimensional radial 1/r2 field, we showed that for a point mass

∫

�

div g(x)d3x =
∫

∂�

〈g(x),n〉d2x = −4πGm ×

{

0, y �∈ �,

1, y ∈ �
. (1.7)

In other words, div g behaves as the three-dimensional Dirac δ-function in Eq. (A.95)

(technically a distribution), and we can formally write

4 Quite obviously, even before computing it, we knew that the flux on the spherical hole is independent of the adopted value of

R, which is consistent with the fact that the flux on ∂� cannot depend on our arbitrary choice of R!
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1.3 The Gauss Theorem and the Gravitational Field 9

div x
x − y

||x − y||3
= 4πδ(x − y), (1.8)

where the subscript indicates the coordinates used to compute the divergence. From the

superposition principle, we now conclude that, given an arbitrary mass distribution ρ(x)

and an arbitrary closed (and sufficiently regular) region � ⊂ ℜ3, the flux of g produced

by ρ through the boundary ∂� is −4πGM , where M =
∫

�
ρd3x is the mass contained

in the volume. Highlighting an elementary but (perhaps) not always appreciated point is

in order here. In fact, it is clear that a null flux over a closed surface ∂� does not imply a

null field inside the region �, as is obvious for the case of a point mass external to a given

volume. In turn, this also means that, in general, one cannot prove that the gravitational

(or electrostatic) field inside an empty cavity is zero simply by considering the null flux

through some closed surface contained in the cavity. A naturally related question is then

why inside an electrically charged, conducting, and closed surface of arbitrary shape at

equilibrium not only the flux but also the field is zero (the so-called Faraday’s cage), while

inside a material surface of similar shape the gravitational field is not zero, even though the

force law in the two cases is mathematically identical. To properly answer this question, we

must move to the next chapter, where we encounter the concept of gravitational potential,

which is fundamental in stellar dynamics.

We will now use Eq. (1.8) to obtain the differential equation relating the gravitational

field of a mass distribution to its density. In practice, we compute5 the divergence under the

sign of the integral of Eq. (1.2), and from Eq. (1.8), we obtain the fundamental identity

div g(x) = −4πGρ(x). (1.9)

If we now insert into Eq. (1.9) the expression for the field of a point mass from Eq. (1.1),

we deduce that

ρ(x) = mδ(x − y), (1.10)

or, in other words, that physically the Dirac δ-function can be imagined as the “density

distribution” of a point mass. This shows in the most apparent way that the δ-function is

a dimensional object with the inverse volume units of the space under consideration, and

that, from a mathematical point of view, a point mass is “more” than just a simple point of

“infinite density.”

1.3.1 Newton’s First and Second Theorems Again

We are now in the position to prove again, using a different approach, Newton’s first and

second theorems, and to show the power of the Gauss theorem in Eq. (1.7). In fact, from

the property that the gravitational field of a spherically symmetric mass distribution ρ(r) is

5 Of course, this step can be rigorously justified (e.g., see Kellogg 1953).
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10 The Gravitational Field

radial (i.e., g = gr(r)fr ; see Section 1.2), and using a spherical control volume of radius r

centered on the origin, Eq. (1.7) reduces immediately to

4πr2gr(r) = −4πGM(r), M(r) = 4π

∫ r

0

ρ(t)t2dt, (1.11)

where the (still unknown) component gr has been “factorized” out of the integral thanks

to its geometric properties and to a wise choice for the integration surface. In practice, the

gravitational (or electrostatic) field of a spherical mass (charge) distribution at distance r

from the center is the same field of a point mass (charge) of mass M(r) or charge Q(r).

Newton’s two theorems are immediately recovered from Eq. (1.11) for the case of ρ given

the homogeneous shell in Eq. (1.4). The student is encouraged to follow the same line

of reasoning and deduce the expressions analogous to Eq. (1.11) for cylindrical densities

ρ(R) and planar densities ρ(z), taking into account the precautionary notes at the end of

Section 1.2.

A final warning to enthusiastic students: unfortunately, the powerful Gauss theorem

is not a magic tool that can, elegantly and effortlessly, give the gravitational field of an

arbitrary mass distribution while sparing the tedious work of integration. In fact, even

though the Gauss theorem holds for arbitrary volumes and mass distributions, it should

be clear that the derived expressions for g of spherical, cylindrical, and planar distributions

are based on the exceptional circumstance that the geometry of the surfaces over which the

flux integrand can be factorized is known before g is actually calculated. For generic mass

distributions, the geometric properties of g are not known in advance, such that the question

of what kind of surface one could/should use to repeat the treatment of special geometries

is as difficult as the problem of determining g itself!

Exercises

1.1 With this exercise, we quantify the possibility of considering stars as point masses

in real stellar systems. Consider an idealized stellar system of radius R and homoge-

neously filled with N identical stars of radius R⊙. We define a geometric collision

as the situation realized when the centers of two stars are separated by a distance

d ≤ 2R⊙. By considering the co-volume of N “cylinders” of length λ (a rough

estimate of the mean free path; e.g., see Born 1969) and radius 2R⊙ (why?), argue

that an estimate of λ can be obtained by imposing that the total volume of the

cylinders equals the volume of the sphere, i.e., formally

λ

2R
=

R2

6NR2
⊙

. (1.12)

Estimate λ for an elliptical galaxy and for a globular cluster.

1.2 Let

g(x) = −Gm
x − y

‖x − y‖1+α
, α < 3, (1.13)
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