Table of Contents

Preface

Part I Core Material

1 Historical Introduction
 1.1 Historical Overview
 1.2 Lessons from History
 1.3 Control and Information
 1.4 Notes and References

2 Dynamical Systems
 2.1 Introduction: The Pendulum as a Dynamical System
 2.2 General Formulation
 2.3 Frequency Domain
 2.4 Time Domain
 2.5 Stability
 2.6 Bifurcations
 2.7 Summary
 2.8 Notes and References
 Problems

3 Frequency-Domain Control
 3.1 Basic Feedback Ideas
 3.2 Two Case Studies
 3.3 Integral, Derivative, and PID
 3.4 Feedforward
 3.5 Stability of Closed-Loop Systems
 3.6 Delays and Nonminimum Phase
 3.7 Designing the Control
 3.8 MIMO Systems
 3.9 Summary
 3.10 Notes and References
 Problems

4 Time-Domain Control
 4.1 Controllability and Observability

v
Contents

4.2 Control Based on the State 142
4.3 Control Based (Indirectly) on the Output 148
4.4 Summary 156
4.5 Notes and References 157
Problems 157

5 Discrete-Time Systems 161
5.1 Discretizing Signals 163
5.2 Tools for Discrete Dynamical Systems 175
5.3 Discretizing Dynamical Systems 181
5.4 Design of Digital Controllers 186
5.5 Summary 196
5.6 Notes and References 197
Problems 198

6 System Identification 205
6.1 Physics or Phenomenology? 206
6.2 Measuring Dynamics 207
6.3 Model Building 222
6.4 Model Selection 227
6.5 Model Reduction 233
6.6 Summary 236
6.7 Notes and References 237
Problems 238

Part II Advanced Ideas 249

7 Optimal Control 251
7.1 One-Dimensional Example 252
7.2 Continuous Systems 254
7.3 Linear Quadratic Regulator 259
7.4 Dynamic Programming 263
7.5 Hard Constraints 269
7.6 Feedback 276
7.7 Numerical Methods 286
7.8 Summary 288
7.9 Notes and References 289
Problems 291

8 Stochastic Systems 297
8.1 Kalman Filter 298
8.2 Linear Quadratic Gaussian Control 313
8.3 Bayesian Filtering 319
8.4 Nonlinear Filtering 326
8.5 Why State Estimation Can Be a Hard Problem 340
Contents

8.6 Stochastic Optimal Control 345
8.7 Smoothing and Prediction 348
8.8 Summary 352
8.9 Notes and References 352
Problems 355

9 Robust Control 363
9.1 Robust Feedforward 365
9.2 Robust Feedback 371
9.3 Risk 376
9.4 Worst-Case Methods: The \mathcal{H}_∞ Min-Max Approach 386
9.5 Summary 395
9.6 Notes and References 398
Problems 399

10 Adaptive Control 404
10.1 Direct Methods 407
10.2 Indirect Methods 413
10.3 Adaptive Feedforward Control 424
10.4 Optimal Adaptive Control 430
10.5 Neural Networks 437
10.6 Summary 443
10.7 Notes and References 444
Problems 446

11 Nonlinear Control 454
11.1 Feedback Linearization 455
11.2 Lyapunov-Based Design 466
11.3 Collective Dynamics 469
11.4 Controlling Chaos 476
11.5 Summary 480
11.6 Notes and References 480
Problems 481

Part III Special Topics 491

12 Discrete-State Systems 493
12.1 Discrete-State Models 493
12.2 Inferring States and Models 500
12.3 Control 508
12.4 Summary 511
12.5 Notes and References 512
Problems 513

13 Quantum Control 516
13.1 Quantum Mechanics 517
Contents

13.2 Three Types of Quantum Control 520
13.3 Physical Example 523
13.4 How Different Is Quantum Control? 526
13.5 Summary 528
13.6 Notes and References 530
Problems 531

14 Networks and Complex Systems 533
14.1 Networks in a Nutshell 535
14.2 From Dynamics to Graphs to Networks 540
14.3 Structural Controllability 541
14.4 Minimum Inputs Problem 543
14.5 Control Effort 546
14.6 Complex Systems 551
14.7 Summary 554
14.8 Notes and References 555
Problems 557

15 Limits to Control 561
15.1 Causal Limits 561
15.2 Information-Theoretic Limits 574
15.3 Thermodynamic Limits 588
15.4 Summary 608
15.5 Notes and References 610
Problems 613

References 619
Index 641