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1 Half a century of numerical weather prediction

1.1 Introduction

Numerical weather prediction (NWP) is a very young discipline that developed 

 essentially in the second half  of  the twentieth century with the continual benefit of 

advances in computing. The techniques implemented are used to solve equations 

describing the behaviour of  the atmosphere, that is, to numerically compute future 

values of  the atmosphere’s characteristic parameters from initial values that are 

known from meteorological observations.

The equations used are the general equations of fluid mechanics that were already 

well established by the early twentieth century and to which certain simplifications 

are applied. Those simplifications are justified by the orders of magnitude of the vari­

ous terms in the specific instance of the Earth’s atmosphere and by the scales to be 

described. Computers are essential for solving these systems of nonlinear equations, 

which, in the general case, cannot be solved analytically.

A numerical model of  the atmosphere is constructed in two separate stages: first, a 

system of equations is established to govern the continuous behaviour of the atmos­

phere; then, by the process of discretization, the equations relating to continuous vari­

ables are replaced by equations relating to discrete variables, the solutions to which are 

obtained by an appropriate algorithm. The results of a numerical prediction (that is, 

the solutions of discretized equations of dynamic meteorology) depend therefore on 

the discretization process employed.

Implementing this algorithm requires a sufficiently powerful computing tool. This 

is why advances in numerical weather prediction have followed in the wake of the fan­

tastic development of electronic computers since they came into being at the end of 

the Second World War.

And last, it should be emphasized that weather forecasting achieved by forecasters 

using numerical models owes its success to the implementation of the global weather 

observing system that relies on both conventional and satellite measurements and pro­

vides an admittedly imperfect but nonetheless effective description of the atmosphere 

at a given initial time.
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half a century of numerical weather prediction2

1.2 The early days

The history of numerical weather prediction features a number of stages that proved 

decisive in the development of the discipline.

Back in 1904, the Norwegian Vilhelm Bjerknes recognized that weather forecast­

ing is fundamentally a deterministic initial-value problem in the mathematical sense 

(Bjerknes, 1904):

If it is true, as every scientist believes, that subsequent atmospheric states develop 

from the preceding ones according to physical law, then it is apparent that the neces-

sary and sufficient conditions for the rational solution of forecasting problems are the 

following:

– A sufficiently accurate knowledge of the state of the atmosphere at the initial time.

–  A sufficiently accurate knowledge of the laws according to which one state of the 

atmosphere develops from another.

However, he realized that the difficulty lay in the need to solve a system of nonlinear 

partial differential equations for which there were no analytical solutions, in the gen­

eral case.

Between 1916 and 1922, the Englishman Lewis Fry Richardson tried to solve 

weather forecast equations by numerical methods. He even made a 6­hour forecast 

by hand, although it proved quite unrealistic. Undaunted, though, he sought out 

the causes of his failure. His work was published in 1922 in his famous and truly 

visionary Weather Prediction by Numerical Process (Richardson, 1922). Noting that  

‘32 ×	2000 = 64,000 computers would be needed to race the weather for the whole globe’, 

Richardson let his imagination roam and dreamed of a weather­forecasting factory, 

with a myriad of people making synchronized computations under the control of a 

supervisor tasked with the orchestration of operations (Figure 1.1).

In 1928, the German mathematicians Courant, Friedrichs, and Lewy systematically 

studied how to solve partial derivative equations by using finite differences and spe­

cified the constraints to comply with when performing discretization (Courant et al., 

1928).

In 1939, the Swede Carl­Gustav Rossby showed that the absolute vorticity conserva-

tion equation provided a correct interpretation of the observed displacement of atmos­

pheric centres of action (Rossby, 1939).

In 1946, the first electronic computer, the ENIAC (Electronic Numerical Integrator 

and Computer) was installed at Pennsylvania University, in Philadelphia, while the 

Hungarian­born U.S. mathematician John von Neumann was also working on build­

ing improved machines at the Institute for Advanced Studies in Princeton.

In 1948, the American Jule Charney proposed a simplification of the general system 

of equations, known as the quasi-geostrophic approximation, and found, as a specific 

instance, the equation studied by Rossby (Charney, 1948).
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1.3 half a century of continual progress3

Finally, in 1950 Jule Charney, the Norwegian Ragnar Fjörtoft, and John von 

Neumann made the first numerical weather prediction (Charney et al., 1950): they 

used the absolute vorticity conservation equation for this experiment and did the com­

puting on the ENIAC at Aberdeen (Maryland). The results obtained for the forecast 

of geopotential height of the 500 hPa isobaric surface, characteristic of the middle 

atmosphere, were most encouraging, and the experiment marked the starting point of 

modern numerical prediction (Platzman, 1979). In answer to Charney, who had sent 

the paper describing the experiment to him, Richardson wrote in 1952: ‘Allow me to 

congratulate you and your collaborators on the remarkable progress which has been made 

in Princeton; and on the prospects of further improvement which you indicate to establish 

a science of meteorology, with the aim of predicting future states of the atmosphere from 

the present state’ (Ashford, 1985).

1.3 Half a century of continual progress

The success of Charney, Fjörtoft, and von Neumann’s experiment was to lead from 

the mid 1950s onwards to the development for operational purposes of a large number 

of increasingly complex prediction models of ever greater spatial resolution, allowing 

ever smaller scales to be covered.

 Figure 1.1 richardson’s ‘dream.’ (artist’s impression by alf lannerbaeck, published by the swedish newspaper Dagens Nyheter, 

22 september 1984)
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half a century of numerical weather prediction4

1.3.1 The need to be fast and accurate

Richardson had fully understood that numerical weather prediction was a race between 

the computing process and the actual evolution of the atmosphere. The speed of com­

putation depends on the various characteristics of the prediction model and on the 

speed of the computer used, in a form we shall examine in detail.

Suppose that the equations are discretized by dividing space into boxes defined by 

a horizontal grid and a number of vertical levels. Within each box, the atmosphere 

is assumed to be homogeneous and so it suffices to know the values of the various 

atmospheric quantities at some point within the box. The time required to make a pre­

diction for a given time range can then be calculated by taking account of the various 

factors involved:

The total number •	 Nv of  variables to be processed. The state of the atmosphere being 

described by a limited number of quantities (the two components of horizontal 

wind, temperature, specific humidity, and surface pressure), the number of variables 

is equal to the product of that number of parameters by the total number of points 

processed, which varies with the size of the geographical domain and the spatial 

resolution adopted horizontally and vertically.

The number of calculations •	 Nc to be made per variable for a time step Δt. This 

number of elementary arithmetical operations depends on the complexity of the 

model, with greater allowance for interactions among variables being reflected by an 

increased number of calculations.

The number of time steps •	 Nt needed to reach a given time range H, namely, Nt = H/Δt.  

This time step Δt depends on the spatial resolution characterized by the mesh size Δx 

of  the grid, for it must satisfy the Courant, Friedrichs, and Lewy (CFL) condition 

that is expressed as:

UΔt/Δx<C,

where U is the speed of  propagation of  the fastest waves described by the equa­

tions and C is a dimensionless number dependent upon the problem geometry and 

the chosen discretization. While some algorithms, to be discussed later, can take 

us beyond this limit, it is nonetheless true that the time step Δt must be reduced 

concomitantly with the mesh size Δx to process the space and time scales of 

 mesoscale atmospheric phenomena with similar accuracy, as shown by examin­

ation of  Table 1.1.

The computer’s calculating speed •	 R. This is expressed as the number of elementary 

floating point operations per second, or flops, whether done by one computer or sev­

eral computers in parallel.

The time T required to make a prediction for a given time range H is given by the 

ratio:

T = NvNcNt/R.
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5 1.3 half a century of continual progress

Table 1.1 the different meteorological phenomena with their respective time and space scales. (after orlanski 
(1975). Bull. Am. Meteor. Soc., 56, 528 © amer. Met. soc.)

 To take the example of the ARPEGE operational model used by Météo­France in 

1998, the number of variables to be processed was Nv ≈ 23.106 (600 × 300 horizontal 

points, 31 levels, 4 three­dimensional variables, and 1 two­dimensional variable), the 

number of calculations to be made for one variable was Nc ≈ 7.103, and the number of 

time steps for a 24­hour forecast was Nt = 96 (15­minute time steps). The calculations 

were made on a FUJI VPP700 multiprocessor computer credited with a computa­

tional speed of up to 20 gigaflops (20 billion floating point operations per second) and 

the time required for a 24­hour forecast was just under a quarter of an hour.

As the time T is imposed by operational constraints, any increase in the computer’s 

speed means the model’s resolution may be augmented (horizontal grid spacing and 
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half a century of numerical weather prediction6

number of vertical levels) as may the number of calculations made for each of the 

variables. This evolution towards greater resolution and increased complexity has been 

the rule in recent decades; it has also been facilitated by the development of new algo­

rithms allowing longer time steps.

1.3.2 The use of filtered equations

The earliest models used operationally relied on the quasi­geostrophic approximation 

that imposes a diagnostic (that is, time­independent) relation between the pressure field 

and the wind field, which reduces the number of degrees of freedom of the model. This 

approximation also has the effect of conserving only slow waves, known as Rossby waves, 

as solutions and eliminating rapidly propagating inertia-gravity waves; it thus allows us 

to use a comparatively large time step compatible with the CFL condition. Because of 

the filtering effect so obtained, the simplified equations are known as filtered equations. 

Such a three­level model (Charney, 1954) was put into service for operational forecasting 

in May 1955 by the U.S. Weather Bureau. However, it was not until it was improved by 

Cressman (1963) that forecasters could really use the tool (Shuman, 1989). In the 1960s 

and until the mid 1970s models with filtered equations were widely used by the leading 

meteorological services (Bushby, 1987; Pône, 1993; Cressman, 1996; Rochas and Javelle, 

1993). Enhanced computer performances were then used to extend the domain and 

increase the horizontal resolution and the number of vertical levels (thereby increasing 

the number of variables Nv) so as to better describe the dynamics of the atmosphere.

1.3.3 Back to the primitive equations and initialization

The growing calculating speed of computers meant it was then possible to return to 

the equations for the evolution of a fluid in hydrostatic equilibrium used earlier by 

Richardson, which were from then on termed the primitive equations. They admit rap­

idly propagating inertia­gravity waves as solutions, and for compliance with the CFL 

condition require the choice of a time step some six times smaller than with filtered 

equations, thereby increasing the number of time steps Nt. Work on the primitive equa­

tions begun by Eliassen (1956) led to successful tests in the United States (Smagorinsky, 

1958) and in Germany (Hinkelmann, 1959). In the United States, the primitive equa­

tion model with six vertical levels developed by Shuman and using a 381 km mesh on an 

octagonal domain covering most of the northern hemisphere (Shuman and Hovermale, 

1968) began its operational career on 6 June 1966, thus opening up the path to general­

ized use of this type of model for many meteorological services.

Primitive equation models are relatively easy to implement but require that the ini-

tialization problem be solved. Pressure and wind fields coupled through evolution 

equations must respect a certain balance at the initial time; otherwise they will give 

rise to substantial oscillations owing to the propagation of gravity waves of unrealis­

tic amplitudes (Hinkelmann, 1951). The difficulty in obtaining a balanced initial state 

from pressure and wind observations was what brought about Richardson’s unrealistic 

result in the first attempt at numerical prediction (Lynch, 1994).
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1.3 half a century of continual progress7

Static initialization methods whereby the wind field is deduced from the pressure 

field using a linear or nonlinear equation proved comparatively ineffective; moreover, 

wind observations were not really used then for defining the initial state. It was in the 

late 1970s that an elegant solution to the problem of initialization of global fields was 

found, independently by Baer and Tribbia (1977) and by Machenhauer (1977). The 

idea was to decompose the initial state of the atmosphere into normal modes (that 

is, into solutions of a linearized version of the model) and then to correct the inertia­

gravity modes in the initial state so as to make them stationary when the model evolved. 

This technique of nonlinear normal mode initialization meant primitive equation models 

could be used effectively to take full advantage of initial pressure and wind data.

1.3.4 Global processing and the spectral method 

Elementary reasoning based on the speed at which perturbations move shows that the 

working area has to be extended and so the number of points Nv increased when one 

wishes to make predictions over longer time ranges (Figure 1.2).

The models for limited geographical areas were replaced by hemispheric models, 

and then finally by global models allowing interactions between the two hemispheres 

to be handled properly. This meant grids had to be defined on a sphere and the prob­

lem of instability resulting from smaller mesh size close to the poles had to be solved.

Alongside grid point models using the finite difference method for computing par­

tial derivatives, the use of spectral models has developed. In these, fields defined on 

the sphere are represented by series expansion in terms of basis functions: the surface 

 Figure 1.2 Worldwide distribution of radiosounding stations and indication of regions for which observations are required for 

making 1-, 3-, and 5-day forecasts over the central area Z. (eCMWf image)
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half a century of numerical weather prediction8

spherical harmonics. This method allows better evaluation of wave speeds than by the 

finite difference method. It had long been reserved for models with just a few degrees 

of freedom, because of the high cost of direct computation of the expansion coeffi­

cients for nonlinear terms. With the advent of the fast Fourier transform (Cooley and 

Tukey, 1965), it proved far more advantageous to use the transform method, consisting 

in calculating the nonlinear terms at the nodes of an intermediate grid (Orszag, 1970; 

Eliassen et al., 1970). This technique made the spectral method highly competitive 

(Bourke, 1972), and in the 1980s it superseded the grid point method almost every­

where for producing global models.

1.3.5 Limited area models

In addition to extending the area, which was necessary to extend the time range of 

forecasts, it turned out to be advantageous for short­range forecasting (1–2 days) to 

continue working on a restricted area using a grid with a fine enough mesh to simu­

late small­scale motion correctly and reproduce features caused by topography. Thus, 

limited area models (LAM) were developed enabling short­range, small­scale predic­

tions to be made (Rousseau et al., 1995). Mathematical analysis shows that field values 

have to be specified on the area boundary for each time step. The field values may 

be obtained by interpolating fields from a larger scale model. However, a dissipation 

term should be introduced into the limited area model to damp perturbations that are 

engendered by forcing fields at the boundary and that propagate towards the interior 

of the domain (Davies, 1976). This leads to the nested models that are the basis of 

operational prediction systems in most meteorological services.

As the spectral method and normal mode nonlinear initialization had proved effect­

ive for global models, it was tempting to apply the same techniques to models for 

limited areas. Among the various approaches proposed was that of Machenhauer and 

Haugen (1987), consisting in extending the fields over a larger domain so as to make 

them doubly periodic; this artefact allows the spectral method to be used on a limited 

area by performing the series expansion in terms of trigonometric functions.

As for the normal mode nonlinear initialization method, it is possible, under 

certain assumptions about the definition of  the linearized part of  the model, to sta­

tionarize inertia­gravity modes in physical space (Brière, 1982; Juvanon du Vachat, 

1986). This process was successfully applied for initializing primitive equation lim­

ited area models. Subsequently a method of  digital filtering of  high frequencies 

corresponding to inertia­gravity waves was proposed by Lynch and Huang (1992). 

It provides satisfactory solutions to the initialization problem for limited area mod­

els and for models whose geometry makes it impossible to determine any normal 

modes.

1.3.6 Algorithms for an increased time step

The use of explicit time integration schemes with primitive equations requires the use 

of time steps six times smaller than those of the filtered models just to satisfy the 
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1.3 half a century of continual progress9

CFL condition. Robert (1969) came up with a fresh approach, proposing to process 

the terms responsible for gravity wave propagation implicitly. This semi-implicit time 

integration algorithm yields a new, much less restrictive CFL condition as it involves 

only the maximum speed of the synoptic wind and no longer the speeds of the fastest 

waves. This possibility of increasing the time step has its downside, as a system of lin­

ear equations then needs to be solved. Despite this, the semi­implicit algorithm main­

tains a clear lead, allowing the run time for grid point models to be divided fourfold 

and by even more for spectral models. This explains why it has been so popular and 

become so widespread since the 1970s.

Lagrangian processing of advection was initially used by Fjörtoft (1952) to solve 

a simple model graphically. The method then inspired Lepas (1963) in constructing a 

numerical prediction model. Krishnamurti (1962) and Sawyer (1963) also proposed 

using the technique to improve the accuracy of numerical advection schemes. However, 

the credit goes again to Robert (1981) for showing that the method used in conjunc­

tion with semi­implicit processing could free us from the CFL condition. Time discret­

ization is performed on the total derivative (or Lagrangian derivative) and forces us to 

interpolate the model variables at the starting point of particles arriving at the grid 

points during their movement in one time step. We thus obtain the semi-Lagrangian 

semi-implicit scheme algorithm allowing us to further increase the time step Δt (and 

so reduce the number of time steps Nt) within the limits compatible with the required 

accuracy for representing the relevant time scales.

It should also be emphasized that this highly effective algorithm has also made the 

use of variable grid models (that is, with increasing resolution over a chosen area) into 

a competitive solution for the nested model system once the time step is no longer 

dependent on the smallest grid dimension in the working domain (Courtier and 

Geleyn, 1988; Côté et al., 1993).

1.3.7 The move to nonhydrostatic equations 

The semi­Lagrangian semi­implicit scheme opened up new horizons for nonhydro­

static models that are essential for correctly handling spatial scales of the order of 

1 km. Their operational implementation had until then come up against the problem 

of the very small time step arising from the need to comply with the CFL condition 

relative to the propagation of sound waves (also known as acoustic waves). However, 

Lagrangian processing of advection combined with implicit processing of the terms 

responsible for the propagation of gravity waves and sound waves leads to an uncon­

ditionally stable algorithm so that it is now possible to envisage using nonhydrostatic 

models (Tanguay et al., 1990; Laprise, 1992; Bubnova et al., 1995) to simulate atmos­

pheric motion from the planetary scale to mesoscale (Table 1.1).

1.3.8 Physical processes

It soon proved necessary to evaluate the source and sink terms of momentum, heat, 

and water vapour resulting from more or less complex physical processes that have 
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half a century of numerical weather prediction10

to be introduced into equations to reproduce the evolution of the atmosphere realis­

tically. Given that the scales to be taken into account to accurately simulate the rele­

vant physical processes are generally smaller than the scales described by the model 

variables (these are sometimes referred to as subgrid scales), these processes have to 

be parameterized: their average effect on the model variables alone is sought. These 

additional computations form the model physics and are grafted onto the numerical 

processing of equations, which is the model dynamics.

After allowing in a simple way for the effects of friction to avoid depressions deep­

ening excessively, a real improvement was made in describing the atmospheric water 

cycle and its associated energy exchanges. The addition of an extra equation describ­

ing the transport of water vapour is required to have the means for handling the effects 

of changes in water phases and for calculating precipitation (Smagorinsky, 1962).

Proper description of the turbulent transfer mechanisms between the soil and the 

atmosphere, not just for momentum but also for sensible heat and water vapour, 

implies calculating turbulent fluxes near the surface (Businger et al., 1971; Deardorff, 

1972; Louis, 1979). This calculation involves additional variables, apart from dynamic 

model variables calculated for the lowermost level, such as surface temperature and 

moisture as well as data characterizing the soil such as roughness length or plant cover 

(Deardorff, 1977).

It is obvious that the evolution of surface variables is directly related to energy inputs 

from radiation flux, which in turn is highly dependent upon the time of day and cloud 

cover. This is why it is essential to calculate the effects of interaction between radiation 

and the various constituents of the atmosphere, especially the water present in its vari­

ous phases. The effects of absorption, scattering, and re­emission of radiation, which 

differ particularly depending on whether the atmosphere is clear or cloudy, must be 

computed (Rodgers and Walshaw, 1966; Katayama, 1974).

Because of the hydrostatic hypothesis, the primitive equations cannot deal expli­

citly with convective motion resulting from local vertical instability of the atmos­

phere. The convective adjustment methods (Manabe and Strickler, 1964), which were 

designed to correct the vertical profiles leading to unstable solutions for the model, 

have been superseded by more elaborate methods that account for the effects of inter­

action between convective clouds and their environment (Kuo, 1965, 1974; Arakawa 

and Schubert, 1974; Bougeault, 1985).

The comparatively recent inclusion of energy dissipation of the vertically propagat­

ing mountain waves has also improved the prediction of the intensity of jet streams 

above mountainous regions (Palmer et al., 1986).

1.3.9 Objective analysis and data assimilation

Alongside the improvement made to the forecasting models, very important theoret­

ical and practical work has also been done in precisely determining a given state of 

the atmosphere allowing for the various observations available (Daley, 1980). This 
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