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1 Introduction

Motivation: This chapter is intended to introduce the class of systems addressed

in this volume – the so-called Linear Plant/Nonlinear Instrumentation (LPNI)

systems – and to characterize the control methodology developed in this book –

Quasilinear Control (QLC).

Overview: After introducing the notions of LPNI systems and QLC and listing the

problems addressed, the main technique of this book – the method of stochastic lin-

earization – is briefly described and compared with the usual, Jacobian, linearization.

In the framework of this comparison, it is shown that the former provides a more

accurate description of LPNI systems than the latter, and the controllers designed

using the QLC result, generically, yield better performance than those designed using

linear control (LC). Finally, the content of the book is outlined.

1.1 Linear Plant/Nonlinear Instrumentation Systems

and Quasilinear Control

Every control system contains nonlinear instrumentation – actuators and sensors.

Indeed, the actuators are ubiquitously saturating; the sensors are often quantized;

deadzone, friction, hysteresis, and so on are also encountered in actuator and sensor

behavior.

Typically, the plants in control systems are nonlinear as well. However, if a con-

trol system operates effectively, that is, maintains its operation in a desired regime,

the plant may be linearized and viewed as locally linear. The instrumentation, how-

ever, can not: to reject large disturbances, to respond to initial conditions sufficiently

far away from the operating point, or to track large changes in reference signals – all

may activate essential nonlinearities in actuators and sensors, resulting in fundamen-

tally nonlinear behavior. These arguments lead to a class of systems that we refer to

as Linear Plant/Nonlinear Instrumentation (LPNI).

The controllers in feedback systems are often designed to be linear. The main

design techniques are based on root locus, sensitivity functions, LQR/LQG, H∞,

and so on, all leading to linear feedback. Although for LPNI systems both linear and
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2 Introduction

nonlinear controllers may be considered, to transfer the above-mentioned techniques

to the LPNI case, we are interested in designing linear controllers. This leads to closed

loop LPNI systems.

This volume is devoted to methods for analysis and design of closed loop LPNI

systems. As it turns out, these methods are quite similar to those in the linear case.

For example, root locus can be extended to LPNI systems, and so can LQR/LQG,

H∞, and so on. In each of them, the analysis and synthesis equations remain prac-

tically the same as in the linear case but coupled with additional transcendental

equations, which account for the nonlinearities. That is why we refer to the resulting

methods as Quasilinear Control (QLC) Theory. Since the main analysis and design

techniques of QLC are not too different from the well-known linear control theoretic

methods, QLC can be viewed as a simple addition to the standard toolbox of control

engineering practitioners and students alike.

Although the term “LPNI systems” may be new, such systems have been consid-

ered in the literature for more than 50 years. Indeed, the theory of absolute stability

was developed precisely to address the issue of global asymptotic stability of linear

plants with linear controllers and sector-bounded actuators. For the same class of

systems, the method of harmonic balance/describing functions was developed to

provide a tool for limit cycle analysis. In addition, the problem of stability of systems

with saturating actuators has been addressed in numerous publications. However,

the issues of performance, that is, disturbance rejection and reference tracking, have

been addressed to a much lesser extent. These are precisely the issues considered in

this volume and, therefore, we use the subtitle Performance Analysis and Design of

Feedback Systems with Nonlinear Actuators and Sensors.

In view of the above, one may ask a question: If all feedback systems include

nonlinear instrumentation, how have controllers been designed in the past, lead-

ing to a plethora of successful applications in every branch of modern technology?

The answer can be given as follows: In practice, most control systems are, indeed,

designed ignoring the actuator and sensor nonlinearities. Then, the resulting closed

loop systems are evaluated by computer simulations, which include nonlinear instru-

mentation, and the controller gains are readjusted so that the nonlinearities are

not activated. Typically, this leads to performance degradation. If the performance

degradation is not acceptable, sensors and actuators with larger linear domains

are employed, and the process is repeated anew. This approach works well in

most cases, but not in all: the Chernobyl nuclear accident and the crash of a YF-

22 airplane are examples of its failures. Even when this approach does work, it

requires a lengthy and expensive process of simulation and design/redesign. In

addition, designing controllers so that the nonlinearities are not activated (e.g.,

actuator saturation is avoided) leads, as is shown in this book, to performance

losses. Thus, developing methods in which the instrumentation nonlinearities are

taken into account from the very beginning of the design process, is of signif-

icant practical importance. The authors of this volume have been developing

such methods for more than 15 years, and the results are summarized in this

volume.
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1.2 QLC Problems 3

As a conclusion for this section, it should be pointed out that modern Nonlin-

ear Control Theory is not applicable to LPNI systems because it assumes that the

control signals enter the system equations in a linear manner, thereby excluding

saturation and other nonlinearities in actuators. Model Predictive Control may also

be undesirable, because it is computationally extensive and, therefore, complex in

implementation.

1.2 QLC Problems

Consider the closed loop LPNI system shown in Figure 1.1. Here the transfer func-

tions P(s) and C(s) represent the plant and controller, respectively, and the nonlinear

functions f (·) and g(·) describe, respectively, the actuator and sensor. The signals r,

d, e, u, v, y, and ym are the reference, disturbance, error, controller output, actuator

output, plant output, and measured output, respectively. These notations are used

throughout this book. In the framework of the system of Figure 1.1, this volume

considers the following problems (rigorous formulations are given in subsequent

chapters):

P1. Performance analysis: Given P(s), C(s), f (·), and g(·), quantify the perfor-

mance of the closed loop LPNI system from the point of view of reference tracking

and disturbance rejection.

P2. Narrow sense design: Given P(s), f (·), and g(·), design, if possible, a

controller so that the closed loop LPNI system satisfies the required performance

specifications.

P3. Wide sense design: Given P(s), design a controller C(s) and select the instru-

mentation f (·) and g(·) so that the closed loop LPNI system satisfies the required

performance specifications.

P4. Partial performance recovery: Assume that a controller, Cl(s), is designed

so that the closed loop system meets the performance specifications if the actuator

and sensor were linear. Select f (·) and g(·) so that the performance degradation of

the closed loop LPNI system with Cl(s) does not exceed a given bound, as compared

with the linear case.

P5. Complete performance recovery: As in the previous problem, let Cl(s) be a

controller that satisfies the performance specifications of the closed loop system with

linear instrumentation. For given f (·) and g(·), redesign Cl(s) so that the closed loop

LPNI exhibits, if possible, no performance degradation.

C(s) P(s)f (·)

g(·)

d

r
–

+u y

ym

ve

Figure 1.1. Closed loop LPNI system.

www.cambridge.org/9781107000568
www.cambridge.org


Cambridge University Press
978-1-107-00056-8 — Quasilinear Control
ShiNung Ching , Yongsoon Eun , Cevat Gokcek , Pierre T. Kabamba , Semyon M. Meerkov 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

The first two of the above problems are standard in control theory, but are

considered here for the LPNI case. The last three problems are specific to LPNI

systems and have not been considered in linear control (LC). Note that the last

problem is reminiscent of anti-windup control, whereby Cl(s) is augmented by a

mechanism that prevents the so-called windup of integral controllers in systems with

saturating actuators.

1.3 QLC Approach: Stochastic Linearization

The approach of QLC is based on a quasilinearization technique referred to as

stochastic linearization. This method was developed more than 50 years ago and

since then has been applied in numerous engineering fields. Applications to feed-

back control have also been reported. However, comprehensive development of a

control theory based on this approach has not previously been carried out. This is

done in this volume.

Stochastic linearization requires exogenous signals (i.e., references and distur-

bances) to be random. While this is often the case for disturbances, the references

are assumed in LC to be deterministic – steps, ramps, or parabolic signals. Are these

the only references encountered in practice? The answer is definitely in the negative:

in many applications, the reference signals can be more readily modeled as random

than as steps, ramps, and so on. For example, in the hard disk drive control problem,

the read/write head in both track-seeking and track-following operations is affected

by reference signals that are well modeled by Gaussian colored processes. Similarly,

the aircraft homing problem can be viewed as a problem with random references.

Many other examples of this nature can be given. Thus, along with disturbances,

QLC assumes that the reference signals are random processes and, using stochastic

linearization, provides methods for designing controllers for both reference tracking

and disturbance rejection problems. The standard, deterministic, reference signals

are also used, for example, to develop the notion of LPNI system types and to define

and analyze the notion of the so-called trackable domain.

The essence of stochastic linearization can be characterized as follows: Assume

that the actuator is described by an odd piecewise differentiable function f (u(t)),

where u(t) is the output of the controller, which is assumed to be a zero-mean wide

sense stationary (wss) Gaussian process. Consider the problem: approximate f (u(t))

by Nu(t), where N is a constant, so that the mean-square error is minimized. It turns

out (see Chapter 2) that such an N is given by

N = E

[

df (u)

du

∣

∣

∣

∣

u=u(t)

]

, (1.1)

where E denotes the expectation. This is referred to as the stochastically linearized

gain or quasilinear gain of f (u). Since the only free parameter of u(t) is its standard

deviation, σu, it follows from (1.1) that the stochastically linearized gain depends on
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1.4 Quasilinear versus Linear Control 5

a single variable – the standard deviation of its argument; thus,

N = N(σu). (1.2)

Note that stochastic linearization is indeed a quasilinear, rather than linear,

operation: the quasilinear gains of αf (·) and f (·)α, where α is a constant, are not the

same, the former being αN(σu) the latter being N(ασu).

In the closed loop environment, σu depends not only on f (u) but also on all

other components of the system (i.e., the plant and the controller parameters) and

on all exogenous signals (i.e., references and disturbances). This leads to transcen-

dental equations that define the quasilinear gains. The study of these equations in

the framework of various control-theoretic problems (e.g., root locus, sensitivity

functions, LQR/LQG, H∞) is the essence of the theory of QLC.

As in the open loop case, a stochastically linearized closed loop system is also

not linear: its output to the sum of two exogenous signals is not equal to the sum of

the outputs to each of these signals, that is, superposition does not hold. However,

since, when all signals and functional blocks are given, the system has a constant gain

N , we refer to a stochastically linearized closed loop system as quasilinear.

1.4 Quasilinear versus Linear Control

Consider the closed-loop LPNI system shown in Figure 1.2(a). If the usual Jacobian

linearization is used, this system is reduced to that shown in Figure 1.2(b), where

all signals are denoted by the same symbols as in Figure 1.2(a) but with a ~. In this

C(s) f (·) P(s)r
u v y

g(·)

e

ym

−

(a) LPNI system

C(s) P(s)r
ũ ṽ ỹẽ

ỹm

N J
a = d

dũ
f (ũ)

ũ *

N J
s = d

dỹ
g(ỹ)

ỹ *

−

(b) Jacobian linearization

C(s) P(s)r
û v̂ ŷê

ŷm

Na = E [ d
dû

f (û)]

Ns = E [ d
dŷ

g(ŷ)]

−

(c) Stochastic linearization

Figure 1.2. Closed loop LPNI system and its Jacobian and stochastic linearizations.
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6 Introduction

system, the actuator and sensor are represented by constant gains evaluated as the

derivatives of f (·) and g(·) at the operating point:

NJ
a = df (ũ)

dũ

∣

∣

∣

∣

ũ=ũ∗
, (1.3)

NJ
s = dg(ỹ)

dỹ

∣

∣

∣

∣

ỹ=ỹ∗
. (1.4)

Clearly, this system describes the original LPNI system of Figure 1.2(a) only locally,

around the fixed operating point.

If stochastic linearization is used, the system of Figure 1.2(a) is reduced to the

quasilinear one shown in Figure 1.2(c), where all signals are again denoted by the

same symbols as in Figure 1.2(a) but with a ;̂ these notations are used throughout this

book. As it is indicated above and discussed in detail in Chapter 2, here the actuator

and sensor are represented by their quasilinear gains:

Na(σû) = E

[

df (û)

dû
|û=û(t)

]

, (1.5)

Ns(σŷ) = E

[

dg(ŷ)

dŷ
|ŷ=ŷ(t)

]

. (1.6)

Since Na(σû) and Ns(σŷ) depend not only on f (·) and g(·) but also on all elements

of the system in Figure 1.2(c), the quasilinearization describes the closed loop LPNI

system globally, with “weights” defined by the statistics of û(t) and ŷ(t).

The LC approach assumes the reduction of the original LPNI system to that of

Figure 1.2(b) and then rigorously develops methods for closed loop system analysis

and design. In contrast, the QLC approach assumes that the reduction of the original

LPNI system to that of Figure 1.2(c) takes place and then, similar to LC, develops

rigorous methods for quasilinear closed loop systems analysis and design. In both

cases, of course, the analysis and design results are supposed to be used for the actual

LPNI system of Figure 1.2(a).

Which approach is better, LC or QLC? This may be viewed as a matter of belief

or a matter of calculations. As a matter of belief, we think that QLC, being global,

provides a more faithful description of LPNI systems than LC. To illustrate this,

consider the disturbance rejection problem for the LPNI system of Figure 1.2(a) with

P(s) = 1

s2 + s + 1
, C(s) = 1, f (u) = satα(u), g(y) = y, r(t) = 0 (1.7)

and with a standard white Gaussian process as the disturbance at the input of the

plant. In (1.7), satα(u) is the saturation function given by

satα(u) =











α, u > +α,

u, −α ≤ u ≤ α,

−α, u < −α.

(1.8)
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1.4 Quasilinear versus Linear Control 7
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Figure 1.3. Comparison of stochastic linearization, Jacobian linearization, and actual system
performance.

For this LPNI system, we construct its Jacobian and stochastic linearizations and

calculate the variances, σ 2
ỹ

and σ 2
ŷ

, of the outputs ỹ(t) and ŷ(t) as functions of α.

(Note that σ 2
ỹ

is calculated using the usual Lyapunov equation approach and σ 2
ŷ

is

calculated using the stochastic linearization approach developed in Chapter 2.) In

addition, we simulate the actual LPNI system of Figure 1.2(a) and numerically eval-

uate σ 2
y . All three curves are shown in Figure 1.3. From this figure, we observe the

following:

• The Jacobian linearization of satα(u) is independent of α, thus, the predicted

variance is constant.

• When α is large (i.e., the input is not saturated), Jacobian linearization is

accurate. However, it is highly inaccurate for small values of α.

• Stochastic linearization accounts for the nonlinearity and, thus, predicts an

output variance that depends on α.

• Stochastic linearization accurately matches the actual performance for all

values of α.

We believe that a similar situation takes place for any closed loop LPNI sys-

tem: Stochastic linearization, when applicable, describes the actual LPNI system

more faithfully than Jacobian linearization. (As shown in Chapter 2, stochastic

linearization is applicable when the plant is low-pass filtering.)
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8 Introduction

As a matter of calculations, consider the LPNI system of Figure 1.2(a) defined

by the following state space equations:

[

ẋ1

ẋ2

]

=
[

−1 −1

1 0

][

x1

x2

]

+
[

1

0

]

satα(u)+
[

1

0

]

w

y =
[

0 1
]

[

x1

x2

]

, (1.9)

with the feedback

u = Kx, (1.10)

where x =[x1,x2]T is the state of the plant and w is a standard white Gaussian process.

The problem is to select a feedback gain K so that the disturbance is rejected in the

best possible manner, that is, σ 2
y is minimized. Based on Jacobian linearization,

this can be accomplished using the LQR approach with a sufficiently small control

penalty, say, ρ = 10−5. Based on stochastic linearization, this can be accomplished

using the method developed in Chapter 5 and referred to as SLQR (where the “S”

stands for “saturating”) with the same ρ. The resulting controllers, of course, are

used in the LPNI system. Simulating this system with the LQR controller and with

the SLQR controller, we evaluated numerically σ 2
y for both cases. The results are

shown in Figure 1.4 as a function of the saturation level. From this figure, we conclude

the following:
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Figure 1.4. Comparison of LQR, SLQR, and actual system performance.
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1.5 Overview of Main QLC Results 9

• Since ρ is small and the plant is minimum phase, LQR provides a high gain

solution that renders the output variance close to zero. Due to the underlying

Jacobian linearization, this solution is constant for all α.

• Due to the input saturation, the performance of the actual system with the

LQR controller is significantly worse than the LQR design, even for relatively

large values of α.

• The SLQR solution explicitly accounts for α and, thus, yields a nonzero output

variance.

• The performance of the actual system with an SLQR controller closely

matches the intended design.

• The actual SLQR performance exceeds the actual LQR performance for all

values of α.

As shown, using LQR in this situation is deceiving since the actual system

can never approach the intended performance. In contrast, the SLQR solution is

highly representative of the actual system behavior (and, indeed, exceeds the actual

LQR performance). In fact, it is possible to prove that QLC-based controllers (e.g.,

controllers designed using SLQR) generically ensure better performance of LPNI

systems than LC-based controllers (e.g., based on LQR).

These comparisons, we believe, justify the development and utilization of QLC.

1.5 Overview of Main QLC Results

This section outlines the main QLC results included in this volume.

Chapter 2 describes the method of stochastic linearization in the framework of

LPNI systems. After deriving the expression for quasilinear gain (1.1) and illustrat-

ing it for typical nonlinearities of actuators and sensors, it concentrates on closed

loop LPNI systems (Figure 1.2(a)) and their stochastic linearizations (Figure 1.2(c)).

Since the quasilinear gain of an actuator, Na, depends on the standard deviation of

the signal at its input, σû and, in turn, σû depends on Na, the quasilinear gain of the

actuator is defined by a transcendental equation. The same holds for the quasilinear

gain of the sensor. Chapter 2 derives these transcendental equations for various sce-

narios of reference tracking and disturbance rejection. For instance, in the problem

of reference tracking with a nonlinear actuator and linear sensor, the quasilinear

gain of the actuator is defined by the equation

Na = F

(∥

∥

∥

∥

F�r (s)C(s)

1 + P (s)NaC (s)

∥

∥

∥

∥

2

)

, (1.11)

where

F (σ ) =
∞

∫

−∞

[

d

dx
f (x)

]

1√
2πσ

exp

(

− x2

2σ 2

)

dx. (1.12)

Here, F�r (s) is the reference coloring filter, f (x) is the nonlinear function that

describes the actuator, and || · ||2 is the 2-norm of a transfer function. Chapter 2
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10 Introduction

provides a sufficient condition under which this and similar equations for other per-

formance problems have solutions and formulates a bisection algorithm to find them

with any desired accuracy. Based on these solutions, the performance of closed loop

LPNI systems in problems of reference tracking and disturbance rejection is inves-

tigated. Finally, Chapter 2 addresses the issue of accuracy of stochastic linearization

and shows (using the Fokker-Planck equation and the filter hypothesis) that the error

between the standard deviation of the plant output and its quasilinearization (i.e., σy

and σŷ) is well within 10%, if the plant is low-pass filtering. The equations derived

in Chapter 2 are used throughout the book for various problems of performance

analysis and design.

Chapter 3 is devoted to analysis of reference tracking in closed loop LPNI sys-

tems. Here, the notion of system type is extended to feedback control with saturating

actuators, and it is shown that the type of the system is defined by the plant poles

at the origin (rather than the loop transfer function poles at the origin, as it is in

the linear case). The controller poles, however, also play a role, but a minor one

compared with those of the plant. In addition, Chapter 3 introduces the notion of

trackable domains, that is, the ranges of step, ramp, and parabolic signals that can be

tracked by LPNI systems with saturating actuators. In particular, it shows that the

trackable domain (TD) for step inputs, r(t) = r01(t), where r0 is a constant and 1(t)

is the unit step function, is given by

TD = {r0 : |r0| <
∣

∣

∣

∣

1

C0
+ P0

∣

∣

∣

∣

α}, (1.13)

where C0 and P0 are d.c. gains of the controller and plant, respectively, and α is

the level of actuator saturation. Thus, TD is finite, unless the plant has a pole at the

origin.

While the above results address the issue of tracking deterministic signals,

Chapter 3 investigates also the problem of random reference tracking. First, lin-

ear systems are addressed. As a motivation, it is shown that the standard deviation

of the error signal, σe, is a poor predictor of tracking quality since for the same σe

track loss can be qualitatively different. Based on this observation, the so-called

tracking quality indicators, similar to gain and phase margins in linear systems, are

introduced. The main instrument here is the so-called random sensitivity function

(RS). In the case of linear systems, this function is defined by

RS(�) = ||F�(s)S(s)||2, (1.14)

where, as before, F�(s) is the reference signal coloring filter with 3dB bandwidth

� and S(s) is the usual sensitivity function. The bandwidth of RS(�), its d.c. gain,

and the resonance peak define the tracking quality indicators, which are used as

specifications for tracking controller design.

Finally, Chapter 3 transfers the above ideas to tracking random references

in LPNI systems. This development is based on the so-called saturating random
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