Contents

Preface to the Second Edition xiii
Acknowledgments xvii

PART I Basic Phenomenology

1 Scales 3
 Notes 7

2 Observational Windows 9
 2.1 Radio 11
 2.2 Millimetric 12
 2.3 Infrared 12
 2.4 Optical 13
 2.5 Ultraviolet 14
 2.6 X-Rays 15
 2.7 Other Sources 16
 Notes 16

3 Classifications 19
 3.1 Hubble Classification 20
 3.2 Morphology of Elliptical Galaxies 21
 3.3 Morphology of Spiral Galaxies 22
 Notes 25

4 Photometry, Kinematics, and Dark Matter 29
 4.1 Luminosity Profiles 30
 4.1.1 Exponential Disks 30
 4.1.2 The $R^{1/4}$ Law 32
 4.1.3 Azimuthal Structure 33
 4.2 Doppler Line Shifts and Linewidths 34
 4.2.1 Rotation Curves of Spiral Galaxies 34
 4.2.2 Kinematic Profiles of Elliptical Galaxies 37
 4.3 Global Scaling Laws 39
 4.3.1 Luminosity-Velocity Relation for Spiral Galaxies 40
 4.3.2 The Rising Part of the Rotation Curves of Spiral Galaxies 40
 4.3.3 The Fundamental Plane of Elliptical Galaxies 42
 4.3.4 The Mass of the Central Black Hole – Velocity Dispersion Relation for Spheroids 44
 4.4 Dark Matter and Cosmology 44
 Notes 47
5 Basic Questions, Semiempirical Approach, and the Dynamical Window 53

5.1 Structure 54

5.1.1 Morphology and Pattern Formation in Complex Systems 55

5.2 Formation and Evolution 56

5.2.1 The Cosmological Context 57

5.3 Modeling and Some Fundamental Questions 58

5.4 Relation to Other Branches of Astrophysics 58

PART II Physical Models 61

6 Self-Gravity and Relation to Plasma Physics 63

6.1 Gravity and Self-Gravity 63

6.2 Collective Behavior 63

6.3 A Concise Dictionary 64

Notes 65

7 Relaxation Times, Absence of Thermodynamical Equilibrium 66

7.1 Two-Star Relaxation Times 66

7.1.1 Heuristic Analysis 66

7.1.2 Full Expressions for the Relaxation Times 67

7.1.3 Setting the Parameter Dependence 69

7.1.4 Relation to Other Time Scales 69

7.2 Collisionality and Dynamical Friction in Inhomogeneous Systems 70

7.2.1 Adequacy of the Classical Local Description 70

7.2.2 Slow, Nonadiabatic Evolution of Elliptical Galaxies Induced by Dynamical Friction 71

7.2.3 Other Astrophysical Effects Related to Collisionality 74

7.2.4 Relaxation Processes in Globular Clusters 74

7.3 Collisionless Relaxation Processes 76

7.3.1 Phase Mixing 76

7.3.2 Resonances and Collective Modes 76

7.3.3 Violent Relaxation 77

Notes 78

8 Models 82

8.1 Systems of Many Particles 82

8.2 Continuum Limit and Stellar Dynamics 84

8.3 Fluid Limit and Fluid Models 85

8.3.1 An Example of Moment Equations 87

8.3.2 Equations for a Zero-Thickness Barotropic Fluid Disk 87

8.4 Virial Equations 88

8.5 Asymptotics versus Toy Models 89

8.5.1 Matched Asymptotic Expansions 91

Notes 92

9 Equilibrium and Stability: Symmetry and Symmetry Breaking 95

9.1 The Jeans Theorem 96

9.1.1 A Self-Consistent Collisionless Plasma Configuration with a Current Sheet 97

9.2 Symmetry Breaking 99

9.2.1 An Elementary Example from Classical Mechanics 99

9.2.2 Classification of Modes 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.1 Larmor Oscillations and Drifts</td>
<td>153</td>
</tr>
<tr>
<td>13.5.2 Star Drifts and Stellar Hydrodynamics</td>
<td>155</td>
</tr>
<tr>
<td>13.6 Exact Orbits and the Problem of Self-Consistency</td>
<td>157</td>
</tr>
<tr>
<td>13.6.1 Three-Dimensional Orbits and Polar-Ring Galaxies</td>
<td>157</td>
</tr>
<tr>
<td>13.6.2 Exact Orbits in Nonaxisymmetrical Disks</td>
<td>158</td>
</tr>
<tr>
<td>13.6.3 Orbital Response and Self-Consistency</td>
<td>159</td>
</tr>
<tr>
<td>Notes</td>
<td>160</td>
</tr>
<tr>
<td>14 The Basic State: Vertical and Horizontal Equilibrium of the Disk</td>
<td>162</td>
</tr>
<tr>
<td>14.1 Vertical Equilibrium</td>
<td>163</td>
</tr>
<tr>
<td>14.1.1 The Isothermal Self-Gravitating Slab</td>
<td>163</td>
</tr>
<tr>
<td>14.1.2 The Inhomogeneous Disk and Study of the Solar Neighborhood</td>
<td>164</td>
</tr>
<tr>
<td>14.2 Quasi-Maxwellian Distribution Function for a Cool Disk</td>
<td>168</td>
</tr>
<tr>
<td>14.3 Exact Models</td>
<td>169</td>
</tr>
<tr>
<td>14.3.1 Density-Potential Pairs</td>
<td>169</td>
</tr>
<tr>
<td>14.3.2 Distribution Function for the Isothermal Self-Similar Disk</td>
<td>171</td>
</tr>
<tr>
<td>14.4 A Reference Basic State in View of the Problem of Spiral Structure</td>
<td>172</td>
</tr>
<tr>
<td>14.5 A Reference Basic State in View of the Problem of Dark Matter</td>
<td>175</td>
</tr>
<tr>
<td>14.6 The Problem of Extraplanar Gas</td>
<td>177</td>
</tr>
<tr>
<td>Notes</td>
<td>180</td>
</tr>
<tr>
<td>15 Density Waves</td>
<td>184</td>
</tr>
<tr>
<td>15.1 Dispersion Relations</td>
<td>187</td>
</tr>
<tr>
<td>15.1.1 Dispersion Relation for Tightly Wound Waves in a Disk of Stars</td>
<td>187</td>
</tr>
<tr>
<td>15.1.2 The Quadratic Dispersion Relation for a Fluid One-Component Model</td>
<td>190</td>
</tr>
<tr>
<td>15.1.3 The Cubic Dispersion Relation for the Fluid Model</td>
<td>190</td>
</tr>
<tr>
<td>15.1.4 Finite-Thickness Effects</td>
<td>191</td>
</tr>
<tr>
<td>15.2 Marginal Stability</td>
<td>191</td>
</tr>
<tr>
<td>15.2.1 For the Quadratic Dispersion Relation of the Fluid Model</td>
<td>192</td>
</tr>
<tr>
<td>15.2.2 For the Quadratic Dispersion Relation of the Fluid Model with Finite Thickness</td>
<td>192</td>
</tr>
<tr>
<td>15.2.3 For the Quadratic Dispersion Relation of a Fluid Fully Self-Gravitating Disk with Finite Thickness</td>
<td>193</td>
</tr>
<tr>
<td>15.2.4 For the Zero-Thickness Case in Stellar Dynamics</td>
<td>193</td>
</tr>
<tr>
<td>15.2.5 For the Cubic Dispersion Relation of the Fluid Model</td>
<td>194</td>
</tr>
<tr>
<td>15.3 Wave Branches</td>
<td>195</td>
</tr>
<tr>
<td>15.3.1 Group Propagation and Wave Action</td>
<td>197</td>
</tr>
<tr>
<td>15.3.2 Propagation Diagrams</td>
<td>198</td>
</tr>
<tr>
<td>15.4 Turning Points and Resonances</td>
<td>199</td>
</tr>
<tr>
<td>15.5 Dynamical Mechanisms</td>
<td>200</td>
</tr>
<tr>
<td>15.5.1 Parameter Regimes</td>
<td>200</td>
</tr>
<tr>
<td>15.5.2 Feedback and Maintenance</td>
<td>202</td>
</tr>
<tr>
<td>15.5.3 Overreflection and Excitation</td>
<td>203</td>
</tr>
<tr>
<td>15.5.4 Wave Cycles for Self-Excited Modes</td>
<td>204</td>
</tr>
<tr>
<td>15.6 Equations of the Homogeneous Shearing Sheet</td>
<td>205</td>
</tr>
<tr>
<td>Notes</td>
<td>206</td>
</tr>
<tr>
<td>16 Roles of Gas</td>
<td>210</td>
</tr>
<tr>
<td>16.1 Waves and Effective Stability in a Two-Component Disk</td>
<td>211</td>
</tr>
<tr>
<td>16.1.1 Two-Fluid, Zero-Thickness Dispersion Relation</td>
<td>211</td>
</tr>
</tbody>
</table>
Contents

16.1.2 Marginal Stability and Decoupling 212
16.2 Modeling Process for a Disk of Stars and Gas 215
16.3 Self-Regulation for a Disk of Stars and Gas 218
16.4 Different Behaviors of Gas and Stars at Resonances 219
 16.4.1 Lindblad Resonances 219
 16.4.2 Corotation Resonance 222
16.5 Role of Near-Infrared Observations 223
Notes 226

17 Global Spiral Modes 229
 17.1 Exact Equations for Linear Density Perturbations in a Fluid Disk Model 231
 17.2 Reduction to an Ordinary Differential Equation for Tightly Wound Perturbations 232
 17.2.1 Poisson Equation for Tightly Wound Perturbations 232
 17.2.2 A Single Ordinary Differential Equation 233
 17.2.3 The Quadratic Dispersion Relation Recovered 234
 17.3 A Two-Turning-Point Problem 234
 17.3.1 Boundary Conditions and the Eigenvalue Problem 235
 17.3.2 Two Turning Points 235
 17.3.3 Langer’s Transformation 235
 17.4 Quantum Condition and Discrete Spectrum of Spiral Modes 237
 17.5 From Linear Modes to Spiral Structures in Galaxies 240
 17.5.1 Morphology and Other Properties of Modes 240
 17.5.2 Modeling and the Dynamical Window 242
 17.5.3 Global Modes and Evolution 243
 17.5.4 A Synopsis of Alternative Scenarios 244
Notes 245

18 Spiral Structure in Galaxies 247
 18.1 Quasi-Stationary Spiral Structure and Three Levels of Persistence 248
 18.1.1 Spiral Structure in N-Body Simulations 250
 18.1.2 Investigations into the Large-Scale Shock Scenario 252
 18.2 Dynamical Classification of Spiral Morphologies 253
 18.2.1 Locating the Corotation Circle 256
 18.3 Interpreting Specific Observed Features 257
 18.3.1 Prominent Spiral Arms in the Gaseous Outer Disk 259
 18.4 Evolution 261
Notes 261

19 Bending Waves 266
 19.1 Bending Waves in a Simple Slab Model 269
 19.2 Disk-Halo Interaction and Related Two-Stream Instability 270
 19.3 Inhomogeneous Disks and the Zero-Thickness Limit 272
 19.4 Bending Waves on a Current Sheet and the Solar Sectors 273
Notes 276

20 Dark Matter in Spiral Galaxies 280
 20.1 Rotation Curves of External Galaxies and Their Decomposition 282
 20.1.1 The Maximum-Disk Decomposition 286
 20.1.2 Conspiracy 286
 20.1.3 Degeneracy 287
 20.2 Dynamical Arguments 288
20.3 Dark Matter in Our Galaxy 289
20.4 Cosmological Arguments 290
 20.4.1 Central Cusps 290
 20.4.2 Substructures 291
20.5 Modified Newtonian Dynamics? 291
Notes 294

PART IV Elliptical Galaxies

21 Orbits 299
 21.1 Spherical Potentials 301
 21.1.1 Keplerian Potential 302
 21.1.2 Harmonic Potential 302
 21.1.3 Logarithmic Potential 302
 21.1.4 Isochrone Potential 303
 21.1.5 The Perfect Sphere 304
 21.2 Classification of Potentials in Relation to the Jeans Theorem 304
 21.2.1 The Concept of Isolating Integral Exemplified by the Two-Dimensional Anisotropic Harmonic Oscillator 304
 21.2.2 Local Integrals, Exceptional Integrals, and Quasi-Integrals 305
 21.3 Nonspherical Potentials with Isolating Integrals 306
 21.3.1 Triaxial Case 306
 21.3.2 Axisymmetric Case 307
 21.3.3 Asymptotic Behavior at Large Radii 309
 21.3.4 The Perfect Ellipsoid 310
 21.4 More General Potentials 310
Notes 311

22 Stellar Dynamical Models 313
 22.1 Four Approaches 315
 22.1.1 Search for Interesting Exact Models 315
 22.1.2 Density-Priority Models 316
 22.1.3 Deprojecting the Data 317
 22.1.4 Distribution-Function Priority Models 318
 22.2 Local Description of Relaxed Systems 319
 22.2.1 The Isothermal Sphere 319
 22.2.2 Galaxy Cores and Anisotropic Models Obtained by Means of Adiabatic Growth 321
 22.3 Global Description of Quasi-Relaxed Stellar Systems 325
 22.3.1 Spherical Isotropic (King) Models 326
 22.3.2 Triaxial Isotropic Models Supported by Stationary Tides 332
 22.3.3 Rigidly Rotating Axisymmetric Models 334
 22.3.4 Differentially Rotating Axisymmetric Models with Pressure Anisotropy 335
 22.4 Global Description of Partially Relaxed Stellar Systems 337
 22.4.1 Physical Basis 337
 22.4.2 Selection Criterion and Identification of the Distribution Function 339
 22.4.3 Properties of the Self-Consistent Nontruncated Models 341
 22.4.4 Density Behavior Associated with the $R^{1/4}$ Law 345
 22.4.5 Self-Consistent Truncated Models 346
 22.4.6 Two-Component Models (with Dark Matter) 347
Notes 349
Contents

23 Stability

- **23.1 Basic Equations for Linear Modes**
 - 23.1.1 Linearized Equations
 - 23.1.2 Generalized Spherical Harmonics
 - 23.1.3 Diagonalization
 - 23.1.4 Bounce Average and Resonance Conditions
 - 23.1.5 Conditions at Large Radii
 - 23.1.6 Subsidiary Eigenvalue Problem and Choice of a Set of Basis Functions
 - 23.1.7 Global Dispersion Relation

- **23.2 Radial-Orbit Instability**
 - 23.2.1 A Conjectured Criterion for Instability
 - 23.2.2 Constraints on the Intrinsic Structure of Elliptical Galaxies
 - 23.2.3 Some Theoretical Issues

- **23.3 Stability of Rotating Stellar Systems**

Notes

24 Dark Matter in Elliptical Galaxies

- **24.1 Stellar Dynamical Diagnostics**
- **24.2 Other Kinematic Tracers**
 - 24.2.1 Hot Interstellar Gas
 - 24.2.2 Cold Atomic Hydrogen
 - 24.2.3 Planetary Nebulae and Other Discrete Tracers
 - 24.2.4 Warm Ionized Gas
- **24.3 Globular Clusters versus Dwarf Spheroidal Galaxies**
- **24.4 Early-Type Galaxies at Cosmological Distances**
- **24.5 Dark Matter in Groups and Clusters**

Notes

PART V In Perspective

25 Selected Aspects of Formation and Evolution

- **25.1 Gravothermal Catastrophe**
- **25.2 Collisionless Collapse**
 - 25.2.1 Analogous Themes in Hydrodynamics and Magnetohydrodynamics
 - 25.2.2 Statistical Mechanics of Partially Relaxed Stellar Systems
 - 25.2.3 Some Interesting Properties of the \(f_\infty \) and \(f^{(p)} \) Models
 - 25.2.4 Degeneracy?
- **25.3 Dissipative Collapse**
 - 25.3.1 Cooling Flows
- **25.4 Global Characteristics of Galaxies and Their Evolution**
 - 25.4.1 A Mass-Luminosity Relation for Galaxies?
 - 25.4.2 Weak Homology of Elliptical Galaxies
 - 25.4.3 The Universe at Large Redshifts

Notes

26 Galaxies and Gravitational Lensing

- **26.1 Elements of Gravitational Lensing**
 - 26.1.1 Einstein Rings, Multiple Images, Time Delays
 - 26.1.2 Extended Sources
- **26.2 Kinds of Gravitational Lensing**

Notes
Contents

26.2.1 Microlensing 424
26.2.2 Strong Lensing 424
26.2.3 Weak or Statistical Lensing 425

26.3 Some Interesting Applications 427
26.3.1 Combined Use of Stellar Dynamics and Gravitational Lensing 427
26.3.2 Galaxy-Galaxy Lensing 427
26.3.3 Measurement of the Cosmological Parameters and the Cosmic Shear 429
26.3.4 A Direct Measurement of Magnification Based on Observation of the Fundamental Plane 429
26.3.5 Double Lenses 431

Notes 432

27 Self-Gravitating Accretion Disks 435

27.1 The Traditional Paradigm of Accretion Disks 436
27.1.1 Viscous Diffusion 436
27.1.2 Luminosity by Viscous Dissipation for a Steady-State Accretion Disk 437
27.1.3 A Useful Semiempirical Framework: The \(\alpha \)-Disks 438
27.1.4 Energy Budget: Different Types of Accretion Disks 438

27.2 Steady-State Self-Gravitating Accretion Disks 439
27.2.1 Thickness 439
27.2.2 Momentum and Energy Transport by Density Waves: Self-Regulation 439
27.2.3 Rotation Curves 440
27.2.4 Self-Regulated Accretion Disks 440

27.3 Some Applications 442
27.3.1 Spectral Energy Distribution of Protostellar Disks 442
27.3.2 Non-Keplerian Rotation 445
27.3.3 HI Disks 447

Notes 447

Bibliography 451
Index of objects 455
Index 457