Cybernetic Modeling for Bioreaction Engineering

Uniquely focusing on dynamic modeling, this volume incorporates metabolic regulation as a survival mechanism for cells by driving metabolism through optimal investment of its resources for control of enzyme synthesis and activity. Consequently, the models have a proven record of describing various uptake patterns of mixed carbon substrates that have become significant in modern applications of biomass for the production of bioenergy. The models accurately describe dynamic behavior of microbes in nutrient environments with mixtures of complementary substrates, such as carbon and nitrogen. Modeling of large metabolic networks (including prospects for extension to genome scale) is enabled by lumped hybrid cybernetic models with an unparalleled capacity to predict dynamic behavior of knockout strains. This is an invaluable, must-have reference for bioresearchers and practicing engineers.

Professor Doraiswami Ramkrishna is the Harry Creighton Peffer Distinguished Professor of Chemical Engineering at Purdue University. He pioneered the development of dynamic metabolic modeling and has been active in the area for over thirty years. He is a member of the National Academy of Engineering, coined the term “cybernetic modeling,” and has authored several academic books.

Dr. Hyun-Seob Song is a senior research scientist at Pacific Northwest National Laboratory (PNNL). His expertise features metabolic pathway analysis and dynamic metabolic modeling for complex, large-scale networks. He is also active in the areas of network inference and microbial community modeling.
Cybernetic Modeling for Bioreaction Engineering

DORAISWAMI RAMKRISHNA
Purdue University

HYUN-SEOB SONG
Pacific Northwest National Laboratory
To

our students in the cybernetic group
Contents

Preface	xi
General Notations	xv
1 Introduction	1
2 Enzymatic Adaptation	3
2.1 Enzyme Balance	4
2.2 Metabolic Reaction Rate	5
2.3 The Cybernetic Variables	6
2.3.1 The Control of Enzyme Synthesis	6
2.3.2 The Control of Enzyme Activity	9
3 Early Development of Cybernetic Models	13
3.1 Modeling of Diauxic Growth	13
3.2 Growth and Maintenance in Low Substrate Environments	18
3.3 A Model for the Production of a Bacterial Metabolite	27
3.4 More on Growth on Mixed Carbon Substrates: Simultaneous Utilization	36
3.4.1 Cybernetic Models of Mixed Substrate Growth: Sequential and Simultaneous Utilization of Substrates	37
3.5 Toward Metabolic Networks	42
3.5.1 Elementary Pathways	42
3.5.2 Growth on Complementary Nutrients: Interactive and Noninteractive Substrates	46
3.5.3 Modeling of Bacterial Growth under Multiple Nutrient Limitations	50
3.6 Concluding Remarks	63
4 Revisiting Cybernetic Laws via Optimal Control Theory	64
4.1 System Variables and the Optimal Control Problem	64
4.2 The Matching Law	66
4.3 The Proportional Law	69
4.4 Tandem Treatment of Matching and Proportional Laws	71
4.5 Retrospection of Past Cybernetic Models	72
4.6 Computational Assessment of Different Cybernetic Control Laws	74
Contents

4.6.1 Comparison of Different Cybernetic Models 76
4.6.2 Analysis of an Evolutionary Scenario 82
4.7 Concluding Remarks 85

5 Toward Modeling of Metabolic Networks 86
5.1 Cybernetic Modeling of Metabolic Networks 88
 5.1.1 Model Formulation 88
 5.1.2 Modeling of a Simple Linear Pathway 92
 5.1.3 Modeling of Anaerobic Metabolism of Escherichia coli 95
5.2 Concluding Remarks 103

6 The Hybrid Cybernetic Model (HCM) 105
6.1 Modeling of Regulation 106
 6.2 Anaerobic Growth of E. coli 110
 6.2.1 HCM Simulations for Glucose Limited Growth 111
 6.2.2 HCM Simulations for Growth on Glucose-Pyruvate Mixtures 118
6.3 A Mode Reduction Technique for Lower Order HCM 124
 6.3.1 A General Formulation of Metabolic Yield Analysis 126
6.4 HCM of Yeast Co-Consuming Glucose and Xylose for Ethanol Production 131
 6.4.1 Parameter Determination 135
7.4.2 HCM simulations of Co-Consumption of Glucose and Xylose by Recombinant Yeast, Comparison with Other Models 136
6.5 HCM of Carbon Storage Molecule Accumulation: Poly(β-hydroxybutyrate) 140
6.6 HCM for a Mixed Culture of Yeasts for Bioethanol Production 144
6.7 Concluding Remarks 149

7 The Lumped Hybrid Cybernetic Model (L-HCM) 150
7.1 Modeling Concept 151
 7.1.1 Elementary Mode (EM) Families: A Classification of EMs 151
 7.1.2 Uptake Flux Distribution to EM Families 153
 7.1.3 Modeling of Regulation in L-HCM 154
 7.1.4 Nature of Flux Distribution in L-HCM 157
7.2 L-HCM for Aerobic Growth of Saccharomyces cerevisiae: The Crabtree Effect 158
 7.2.1 Metabolic Network for S. cerevisiae 159
 7.2.2 EMs and EM Lumps 159
 7.2.3 L-HCM Equations 161
 7.2.4 A Lumped Cybernetic Model (LCM) for the Crabtree Effect 162
 7.2.5 Performance of L-HCM on Aerobic Growth of S. cerevisiae 164
7.3 More on Lumping EMs 167
7.4 L-HCM of Multiple Strains of E. coli 169
 7.4.1 EM Lumpmg: Anaerobic Growth of E. coli on Glucose 170
 7.4.2 L-HCM Equations: Anaerobic Growth of E. coli on Glucose 170
Contents

7.4.3 Dynamics of Anaerobic Growth of *E. coli* on Glucose: L-HCM Predictions 171
7.4.4 Effect of Yield Data on EM Lumping 171
7.4.5 On Other EM Lumpings in the Literature 176
7.5 L-HCM of Aerobic Growth of *Shewanella oneidensis* 176
7.5.1 Metabolic Network for *S. oneidensis* 178
7.5.2 L-HCM Equations for *S. oneidensis* 180
7.6 Concluding Remarks 184

8 Predicting Dynamic Behavior of Mutant Strains with L-HCM 186
8.1 Prolegomena 186
 8.1.1 L-HCM Approach to Predicting KO Strain Behavior 187
 8.1.2 Illustration with a Toy Example 189
8.2 L-HCM Predictions of Single Gene Knockouts of *E. coli*: Anaerobic Growth 191
 8.2.1 Reflections on L-HCM Predictions of Single KO Strains 196
8.3 Toward Genome Scale Modeling 198
 8.3.1 Optimization-Based Approaches for EM Computation 200
 8.3.2 Basic Formulation 201
 8.3.3 Typical MILP-Based Approach 202
 8.3.4 AILP-Based Algorithm 203
 8.3.5 Basic Properties of AILP 205
 8.3.6 Computation of EMs from Genome-Scale Networks 208
 8.3.7 EM Sampling by AILP 209
 8.3.8 Summary 212
8.4 Concluding Remarks 212

9 Nonlinear Analysis of Cybernetic Models 213
9.1 Introduction 213
 9.1.1 Multiple Steady States in a Continuous Bioreactor: The Chemostat 215
 9.1.2 HCM Prediction of Steady-State Multiplicity in a Continuous Reactor Fed with Pyruvate-Glucose Mixtures 221
 9.1.3 LCM Prediction of Steady-State Multiplicity in Hybridoma Cultures 222
9.2 Oscillatory Behavior with Cybernetic Models 229
 9.2.1 Oscillations in Continuous Cultures of Yeast (*S. cerevisiae*) 230
 9.2.2 Oscillations in Bacterial Cultures 230
9.3 Concluding Remarks 234

10 Metabolic Modeling Landscape 235
10.1 Introduction 235
10.2 Fully Structured Dynamic Models 236
 10.2.1 Conventional Approaches. Kinetic Formalisms 237
 10.2.2 The Cybernetic Model: Young’s Model 238
Contents

10.3 Quasi Steady State (QSS) Models 239
 10.3.1 Steady-State Network Analysis: FBA and EM Analysis 240
 10.3.2 Conventional Approaches: DFBA and MBM 241
 10.3.3 The Cybernetic Approach: HCM and L-HCM 242
10.4 Unstructured Dynamic Models 244
10.5 Nexus of Metabolic Models 245
10.6 Model Selection 246
 10.6.1 Modeling Goals 247
 10.6.2 Systematic Model Evaluation Based on Information Theoretic Tools 247
 10.6.3 Prediction of Emergent Properties 249
10.7 Concluding Remarks 251

References 252
Index 266
Preface

This book is an outgrowth of nearly three decades of work by our research group and is therefore rightly dedicated to the many students responsible for developing the ideas of modeling microbial systems that have led to its current state of the art.

It began modestly on viewing biomass as an entity devoid of structure except for “key” enzymes that were responsible for the uptake of a mixture of external carbon substrates such as glucose and xylose. The goal was to examine whether it was possible to describe the phenomenon of “diauxic” growth observed by Monod in 1942 with bacteria, which consisted in the preferred utilization of glucose, and utilizing the substrate xylose only after all glucose had been nearly consumed. Monod attributed this phenomenon to metabolic regulation by which enzymes for the uptake of glucose were preferentially synthesized while those for xylose were not. When glucose dropped to low enough levels, expression of enzymes ensued for the uptake of xylose upon which growth on xylose and the glucose that remained occurred together. Monod’s experiments with numerous substrate pairs showed that diauxic behavior invariably occurred with preferential utilization of the substrate that supported a higher growth rate. Building on this clue, we were led to postulate that the organism must make frugal use of its resources for enzyme synthesis so that the resulting growth rate is maximized. Indeed, known molecular details of this regulatory phenomenon could have enabled a more “mechanistic” model, but the temptation was strong to seek a description that had the potential to take a more comprehensive account of regulatory processes at large. Many articles had appeared on how living systems, even microorganisms as products of evolution, must be viewed as capable of responding to their environment calculated to promote their survival. The implication was the existence of a sophisticated machinery in living systems that may have evolved as a “genetic” program, which could craft and execute a survival response to the organism’s environment. If describing the execution was forbiddingly complex, focusing on the strategy alone appeared to make for an attractive alternative for accommodating metabolic regulation. Yet another fundamental issue was the inevitable role of teleology (or more appropriately “teleonomy”) without which explanations of biological phenomena would be drab and devoid of the character of associating events with sustaining life; to entertain regulatory phenomena without an underlying purpose seemed in contradiction with the use of the term “regulation.” These observations added up to viewing the cell as a cybernetic system, the term “cybernetic” arising from the Greek word χυβερνητησ or cybernetes meaning “steersman”; in other words, cell response is under navigation toward a survival goal. This navigation is
accomplished through a molecular infrastructure whose description and function are unessential to the theory.

With the foregoing background, one of us (DR) discussed in an invited lecture at the American Chemical Society some preliminary thoughts in 1982, reproduced in Ramkrishna (1983), toward developing a mathematical framework for the scenario just outlined. This heralded an effort toward the development of a theory that has evolved over nearly three decades piloted by Dhurjati’s doctoral dissertation (1982) in which the growth rate of the organism was maximized over a period specified by a small amount of residual substrate. This optimization was to be accomplished by investment of a fixed amount of resource for the synthesis of enzymes needed to metabolize two different carbon sources. This approach had two difficulties. The computational demands of the resulting singular control problem was incompatible with the goal of extracting the dynamics of the growth process. The finite time horizon for the optimization was felt to be an unsatisfactory feature. A much simpler theory based on the heuristics of maximizing the instantaneous growth rate (zero time horizon) followed in Kompala’s dissertation (1984). The theory successfully described diauxic behavior for several substrate pairs and even accommodated interim lags between the sequential use of substrates. However, growth at low substrate levels failed to connect with experiments so that the chemostat scenario, especially at low dilution rates, was quite out of accord with predictions. The doctoral dissertations of Turner and Baloo sought to correct this situation by including maintenance effects—the implication being the preference for maintenance over growth in the famine situations of low substrate levels. The models handled transients in batch, fed batch, and continuous cultures with mixed substrates. Alexander’s thesis (1990) followed with a detailed, structured model that was successful with applications to product formation.

While each of the foregoing dissertations contributed important elements to the growth of the framework, Straight (1991) was the first to be concerned about addressing metabolic networks. He sought to decompose the network into segments that were linear, converging or diverging, and cycles. Varying objectives assigned to individual units produced different controls that Straight used to describe metabolic performance with complementary substrates. While the mathematical treatment of optimality was akin to that in Kompala’s work, Straight clearly produced a generation of cybernetic models distinct from its predecessors with intriguing success.

Kompala’s success with prediction of the diauxic pattern raised concerns about how simultaneous consumption of mixed substrates (such as organic acids) could be addressed by cybernetic models. Narang (1994) approached this by performing systematic experiments with mixed substrates from which it became evident that uptake patterns of mixed substrates could be quite complex. Ramkrishna (1996), taking a cue from Straight’s work, formulated a cybernetic model that used a simple network in which growth precursors were created for biomass synthesis from breakdown of the different substrates. The uptake pattern that prevailed at any instant was that which allowed the synthesis of precursors ensuring maximum growth rate. Sequential and simultaneous uptake patterns were predicted by the model under the conditions in which they were observed to occur. Straight (1991) provided considerable insight into