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Introduction: Count Data Containing

Dispersion

This chapter is an overview summarizing relevant, established, and well-

studied distributions for count data that motivate the consideration of the

Conway–Maxwell–Poisson (COM–Poisson) distribution. Each of the dis-

cussed models provides an improved flexibility and computational ability

for analyzing count data; yet associated restrictions help readers to appre-

ciate the need for and usefulness of the COM–Poisson distribution, thus

resulting in an explosion of research relating to this model. For complete-

ness of discussion, each of these sections includes discussion of the relevant

R packages and their contained functionality to serve as a starting point for

forthcoming discussions throughout subsequent chapters. Along with the R

discussion, illustrative examples aid readers in understanding distribution

qualities and related statistical computational output. This background pro-

vides insights into the real implications of apparent data dispersion in count

data models and the need to properly address it.

This introductory chapter proceeds as follows. Section 1.1 introduces

the most well-known model for count data: the Poisson distribution. Its

probabilistic and statistical properties are discussed, along with R tools to

perform computations. Section 1.2, however, notes a major limitation of

the Poisson distribution – namely its inability to properly model dispersed

count data. Focusing first on the phenomenon of data over-dispersion, this

section focuses attention on the negative binomial (NB) distribution – the

most popular count distribution that allows for data over-dispersion. Sec-

tion 1.3 meanwhile recognizes the existence of count data that express data

under-dispersion and the resulting need for model consideration that can ac-

commodate this property. While several flexible models allowing for data

over- or under-dispersion exist in the literature, this section focuses atten-

tion on the generalized Poisson (GP) distribution for modeling such data

because it is arguably (one of) the most popular option(s) for modeling
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2 Introduction: Count Data Containing Dispersion

such data. Section 1.4 offers an overarching perspective about these models

as special cases of a larger class of weighted Poisson distributions. Finally,

Section 1.5 motivates an interest in the COM–Poisson distribution and sum-

marizes the rest of the book, including the unifying background that will be

referenced in subsequent chapters.

1.1 Poisson Distribution

The Poisson distribution is the most studied and applied distribution ref-

erenced to describe variability in count data. A random variable X with a

Poisson(λ) distribution has the probability mass function

P(X = x) =
λxe−λ

x!
, x = 0, 1, 2, . . . , (1.1)

or, on the log-scale,

ln [P(X = x)] = x ln λ − ln (x!) − λ

= x ln λ −

x
∑

j=1

ln (j) − λ,

where λ is the associated intensity parameter; illustrative examples of the

distributional form assuming various values of λ are provided in Figure 1.1.

Derived as the limiting distribution of a binomial(n, p) distribution where

n → ∞ and p → 0 such that np = λ, the beauty of this distribution lies in

its simplicity. Both its mean and variance equal the intensity parameter λ;

thus, the dispersion index is

DI(X) =
V(X)

E(X)
=

λ

λ
= 1. (1.2)

The probability mass function satisfies the recursion

P(X = x − 1)

P(X = x)
=

x

λ
, (1.3)

with its moment generating function MX(t) = eλ(et−1), and the Poisson

distribution is a member of the exponential family of the form

P(X = x; θ) = H(x) exp [η(θ)T(x) − �(θ)], x ∈ N, (1.4)

where, for θ = λ, η(θ) = ln (λ), �(θ) = λ, T(x) = x, and H(x) = (x!)−1.

The simplicity of the Poisson distribution, however, can also be viewed as

theoretically constraining and not necessarily representative of real count
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Figure 1.1 Poisson probability mass function illustrations for λ ∈ {0.3, 1, 3, 10}.

data distributions. Thus, applying statistical methods that are motivated

and/or developed by the Poisson model assumption can cause significant

repercussions with regard to statistical inference. This matter is discussed

in more detail in the subsequent sections in Chapter 1 and throughout this

reference.
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4 Introduction: Count Data Containing Dispersion

1.1.1 R Computing

The stats package contains functions to compute the probability, distribu-

tion function, quantile function, and random number generation associated

with the Poisson distribution. All of the relevant commands require the

Poisson rate parameter λ (lambda) as an input value. The dpois func-

tion computes the probability/density P(X = x) for a random variable X

at observation x. The command has the default setting as described (log

= FALSE), while changing the indicator input to log = TRUE computes

the probability on the natural-log scale. The ppois function computes the

cumulative probability P(X ≤ q) given a quantile value q, while qpois

determines the quantile q (i.e. the smallest integer) for which the cumula-

tive probability P(X ≤ q) ≥ p for some given probability p. This quantile

determination stems from the discrete nature of the Poisson probability

distribution. Both commands contain the default settings lower.tail =

TRUE and log.p = FALSE. The condition lower.tail = TRUE infers in-

terest regarding the cumulative probability P(X ≤ q) while lower.tail

= FALSE focuses on its complement P(X > q) (i.e. the upper tail). The

indicator log.p = FALSE (TRUE) meanwhile infers whether to consider

probabilities on the original or natural-log scale, respectively. Finally, the

rpois function produces a length n (n) vector of count data randomly

generated via the Poisson distribution.

Demonstrative examples utilizing the respective functions are pro-

vided in Code 1.1, all of which assume the Poisson rate param-

eter λ = 3. The command dpois(x=5, lambda=3) determines that

P(X = x) = 0.1008188; this value is illustrated in Figure 1.1 for

λ = 3. Meanwhile, dpois(x=5, lambda=3, log = TRUE) shows that

ln (P(X = x)) = ln (0.1008188) = − 2.29443. The ppois functions demon-

strate the difference between computing the lower versus upper tail,

respectively; naturally, the sum of the two results equals 1. The com-

mand qpois(p=0.9, lambda=3) produces the expected result of 5 be-

cause we see that the earlier ppois(q=5, lambda=3) result showed that

P(X ≤ 5) = 0.9160821 > 0.9. Meanwhile, one can see that qpois(p=0.9,

lambda=3, lower.tail = FALSE) produces the value 1 by considering

the corresponding ppois commands:

ppois(q=0, lambda=3, lower.tail=FALSE) produces the result 0.9502129

ppois(q=1, lambda=3, lower.tail=FALSE) produces the result 0.8008517.

Recall that the discrete nature of the Poisson distribution requires a mod-

ified approach for determining the quantile value; the resulting quantile is
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1.2 Data Over-dispersion 5

Code 1.1 Examples of R function use for Poisson distributional computing:

dpois, ppois, qpois, rpois.

> dpois (x=5, lambda =3)

[1] 0.1008188

> dpois (x=5, lambda =3, log = TRUE)

[1] -2.29443

> ppois (q=5, lambda =3)

[1] 0.9160821

> ppois (q=5, lambda =3, lower .tail = FALSE )

[1] 0.08391794

> qpois (p=0.9 , lambda =3)

[1] 5

> qpois (p=0.9 , lambda =3, lower .tail = FALSE )

[1] 1

> rpois (n=10, lambda =3)

[1] 3 4 3 5 2 0 5 5 4 3

determined such that the cumulative probability of interest is at least as

much as the desired probability of interest. This definition suggests that,

when considering the upper tail probability, the resulting quantile now

implies that the corresponding upper tail probability is no more than the

desired probability of interest. As noted above, P(X > 0) = 0.9502129 and

P(X > 1) = 0.8008517; because the desired upper tail probability in the

example is 0.9, we see that 0 produces an upper tail probability that is too

large for consideration, while the upper tail probability associated with 1 is

the first integer that satisfies P(X > x) ≤ 0.9, thus producing the solution

as 1. Finally, for completeness, the rpois function produces 10 randomly

generated potential observations stemming from a Poisson(3) distribution.

Given the probability mass function illustration provided in Figure 1.1 for

λ = 3, these outcomes appear reasonable.

1.2 Data Over-dispersion

Over-dispersion (relative to a comparable Poisson model) describes distri-

butions whose variance is larger than the mean, i.e. DI(X) > 1 for a random

variable X. This is a well-studied phenomenon that occurs in most real-

world datasets. Over-dispersion can be caused by any number of situations,

including data heterogeneity, the existence of positive correlation between

responses, excess variation between response probabilities or counts, and

violations in data distributional assumptions. Apparent over-dispersion can

also exist in datasets because of outliers or, in the case of regression
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6 Introduction: Count Data Containing Dispersion

models, the model may not include important explanatory variables or a

sufficient number of interaction terms, or the link relating the response

to the explanatory variables may be misspecified. Under such circum-

stances, over-dispersion causes problems because resulting standard errors

associated with parameter estimation may be underestimated, thus pro-

ducing biased inferences. Interested readers should see Hilbe (2007) for

a comprehensive discussion regarding over-dispersion and its causes.

The most popular distribution to describe over-dispersed data is the NB

distribution. A random variable X with an NB(r, p) distribution has the

probability mass function

P(X = x) =

(

r + x − 1

x

)

px(1 − p)r (1.5)

=
�(r + x)

x!�(r)
px(1 − p)r, x = 0, 1, 2, . . . , (1.6)

and can be viewed as the probability of attaining a total of x successes

with r > 0 failures in a series of independent Bernoulli(p) trials, where

0 < p < 1 denotes the success probability associated with each trial.

Alternatively, the NB distribution can be derived via a mixture model of

a Poisson(λ) distribution, where λ is gamma distributed1 with shape and

scale parameters, r and p/(1 − p), respectively. The latter approach is a

common technique for addressing heterogeneity. Other possible distribu-

tions for λ include the generalized gamma (which produces a generalized

form of the NB distribution (Gupta and Ong, 2004)), the inverse Gaussian,

and the generalized inverse Gaussian (which produces the Sichel distribu-

tion (Atkinson and Yeh, 1982; Ord and Whitmore, 1986)). Various other

mixing distributions have also been considered; see Gupta and Ong (2005)

for discussion.

The moment generating function of the NB(r, p) random variable X is

MX(t) =

(

p

1 − (1 − p)et

)r

, t < − ln (1 − p),

1 For a gamma(α, β) distributed random variable X with shape and scale parameters α and

β, respectively, its probability density function (pdf) is f (x) = 1
�(α)βα xα−1e−x/β (Casella

and Berger, 1990).
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1.2 Data Over-dispersion 7

which produces a respective mean and variance,

μ
.
= E(X) =

r(1 − p)

p
and (1.7)

V(X) =
r(1 − p)

p2
= μ +

1

r
μ2, (1.8)

where r > 0 can be viewed as a dispersion parameter. Given the dispersion

parameter r, this distribution can be represented as an exponential family

(Equation (1.4)), where θ = p, H(x; r) =
(

r+x−1

x

)

, T(x) = x, η(p) = ln p,

and ψ(p; r) = r ln (1 − p). Equation (1.8) demonstrates that the NB dis-

tribution can accommodate data over-dispersion (DI(X) > 1) because one

can clearly see that the distribution’s variance is greater than or equal to

its mean since r > 0. Further, the NB distribution contains the Poisson

as a limiting case; as r → ∞ and p → 1 such that r(1 − p) → λ,

0 < λ < ∞, not only do the NB mean and variance both converge to λ, but

the NB probabilities likewise converge to their respective Poisson counter-

parts. Figure 1.2 illustrates the distributional convergence of the NB(r, p)

to the Poisson(λ = 3) distribution, where r → ∞ and p → 1 such that

r(1 − p) = 3. The NB distribution likewise contains the geometric(p) as a

special case when r = 1.

The NB distribution can alternatively be represented as NB(r, r/(r + μ))

with the probability mass function

P(X = x) =

(

x + r − 1

x

) (

r

r + μ

)x (

μ

r + μ

)r

, x = 0, 1, 2, . . . , (1.9)

where r > 0, μ > 0; this formulation explicitly has a mean μ and a variance

μ + μ2/r. The MASS package in R utilizes this parametrization and defines

the dispersion parameter as theta such that V(X) = μ + μ2/θ , i.e. θ
.
= r;

we will revisit this in Chapter 5. While the NB distribution has been well

studied and statistical computational ability is supplied in numerous soft-

ware packages (e.g. R and SAS), an underlying constraint regarding the NB

distribution leads to its inability to address data under-dispersion (i.e. the

dispersion index is less than 1, or the variance is smaller than the mean).

1.2.1 R Computing

The stats package provides functionality for determining the probability,

distribution function, quantile function and random number generation for

the NB distribution. These commands all require the inputs size (r) and

either the success probability p (prob) or mean μ (mu), depending on the
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Figure 1.2 Negative binomial distribution illustrations for values of (r, p) ∈

{(5, 0.4), (10, 0.7), (15, 0.8), (60, 0.95), (300, 0.99)} and the Poisson(λ = 3) prob-

ability mass function. This series of density plots nicely demonstrates the distribu-

tional convergence of the negative binomial to the Poisson as r → ∞ and p → 1

such that r(1 − p) → λ.

choice of parametrization. The function dnbinom computes the probability

P(X = x) for a random variable X at observation x, either on the original

scale (log = FALSE; this is the default setting) or on a natural-log scale
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1.2 Data Over-dispersion 9

Code 1.2 Examples of R commands for NB distributional computing: dnbinom,

pnbinom, qnbinom, rnbinom.

> dnbinom (x=5, size =10, prob =0.7)

[1] 0.1374203

> dnbinom (x=5, size =10, prob =0.7 , log = TRUE)

[1] -1.984712

> pnbinom (q=5, size =10, prob =0.7)

[1] 0.7216214

> pnbinom (q=5, size =10, prob =0.7 , lower .tail = FALSE )

[1] 0.2783786

> qnbinom (p=0.9 , size =10, prob =0.7)

[1] 8

> qnbinom (p=0.9 , size =10, prob =0.7 , lower .tail = FALSE )

[1] 1

> rnbinom (n=10, size =10, prob =0.7)

[1] 1 8 7 3 5 8 4 2 5 3

(log = TRUE). For a given quantile value q, the pnbinom function deter-

mines the cumulative probability P(X ≤ q), where the default settings,

lower.tail = TRUE and log.p = FALSE, imply that the resulting cu-

mulative probability is attained by accumulating the probability from the

lower tail and on the original probability scale. The command qnbinom

meanwhile determines the smallest discrete quantile value q that satisfies

the cumulative probability P(X ≤ q) ≥ p for a given probability p. This

function likewise assumes the default settings, lower.tail = TRUE and

log.p = FALSE, such that the quantile q is determined from the lower tail

and on the original probability scale. For both of these commands, changing

the default settings to lower.tail = FALSE and log.p = TRUE, respec-

tively allows analysts to instead consider quantile determination on the

basis of the upper tail probability P(X > q), and via a probability compu-

tation on the basis of the natural-log scale. Finally, the rnbinom function

randomly generates n (n) observations from an NB distribution with the

specified size (size) and success probability (prob).

The NB(r = 10, p = 0.7) distribution is provided in Figure 1.2 and

serves as a graphical reference for the illustrative commands featured

in Code 1.2. All of the demonstrated functions assume r = 10 and

p = 0.7 as the associated NB size and success probability parameters.

The first command (dnbinom(x=5, size=10, prob=0.7)) shows that

P(X = x) = 0.1374203; this probability is shown in the associated

plot in Figure 1.2. Meanwhile, dnbinom(x=5, size=10, prob=0.7,

log = TRUE) shows that ln (P(X = x)) = ln (0.1374203) = − 1.984712.
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10 Introduction: Count Data Containing Dispersion

The pnbinom functions show the results when computing the lower

versus upper tail, respectively; naturally, the sum of the two com-

putations equals 1. Calling qnbinom(p=0.9, size=10, prob=0.7)

produces the result 8, while qnbinom(p=0.9, size=10, prob=0.7,

lower.tail = FALSE) yields the value 1. Finally, the rnbinom com-

mand produces 10 randomly generated potential observations stemming

from an NB(r = 10, p = 0.7) distribution.

1.3 Data Under-dispersion

Where data over-dispersion describes excess variation in count data, under-

dispersion describes deficient variation in count data. Data under-dispersion

(relative to the Poisson model) refers to count data that are distributed

such that the variance is smaller than the mean, i.e. its dispersion index

DI(X) < 1 for a random variable X.

There remains some measures of debate regarding the legitimacy of

data under-dispersion as a real concept. Some researchers attribute under-

dispersion to the data generation (e.g. small sample values) or to the

modeling process (e.g. model over-fitting), noting that the arrival process,

birth–death process, or binomial thinning mechanisms can also lead to

under-dispersion (Kokonendji, 2014; Lord and Guikema, 2012; Puig et al.,

2016). As an example, for renewal processes where the distribution of

the interarrival times has an increasing hazard rate, the distribution of the

number of events is under-dispersed (Barlow and Proschan, 1965). Efron

(1986), however, argues that “there are often good physical reasons for not

believing in under-dispersion, however, especially in binomial and Poisson

situations.”

Whether real or apparent, examples across disciplines are surfacing with

more frequency where data under-dispersion is present; thus there exists the

need to represent such data. The most popular model that can accommodate

data dispersion (whether over- or under-dispersion) is the GP distribution –

a flexible two-parameter distribution that contains the Poisson distribution

as a special case (Consul, 1988). A random variable X that is GP(λ1, λ2)

distributed has the probability mass function

P(X = x)=

⎧

⎨

⎩

λ1(λ1 + λ2x)x−1

x!
exp ( − λ1 − λ2x), x = 0, 1, 2, . . .

0, x ≥ m where λ1 + λ2m ≤ 0

(1.10)
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