
Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction

1.1 Modeling Distributed Systems

The theory of distributed computation can be studied profitably by means of a

class of models that can represent distribution as a first-class concept. Among

the many semantic models proposed in the literature with this aim, Petri nets –

so-called after the name of their inventor Carl Adam Petri [93] – constitute a

pivotal semantic model for a number of reasons, including at least the following:

(i) Distribution is indeed a first-class concept – which is not the case for, e.g.,

labeled transition systems [76, 38, 105, 45], a model commonly used for

giving semantics to process algebras [84, 8, 1, 5, 106] in an interleaving

style, where the execution of two independent parallel actions is modeled

in the same way as their causal sequential execution in either order.

(ii) Since Petri nets possess a notion of (distributed) state, they can be used to

model recursive behavior with a finite structure – which is not the case for

other models of concurrency such as event structures [86, 114].

(iii) Petri nets are a widely studied semantic model (see, e.g., [92, 101, 28, 46]

and the references therein), equipped with precise and simple behavioral

semantics, as we will see in the following chapters of this book.

(iv) Interesting analysis techniques, which are decidable in some cases, are

available for Petri nets (see, e.g., [92, 99, 46] and the references therein);

these techniques are sometimes supported by automatic or semi-automatic

software tools (see, e.g., [108, 109] for surveys on Petri net tools).

(v) And, finally, in the literature there is a large number of case studies in

which Petri nets are applied to the modeling, analysis and verification of

real distributed systems (see, e.g., [102, 100] and the references therein).

In contrast to labeled transition systems, whose states are monolithic entities,

Petri nets describe the global state of a system as composed of a collection of

1

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

local states. A transition does not involve the entire global state; rather it applies

only to some local states. According to the usual Petri net terminology, a local

state) is called a place, while a global state #, called a marking, is a multiset of

local states; hence, since # is a multiset, there may be more than one instance

of a certain local state) in #; a net transition is connected to all the places that

take part in the local operation that this transition wants to model. Graphically,

a place is represented by a small circle; an instance of a local state), called a

token, by a little bullet inside place); and a net transition by a small box, which

is connected to the places from which it removes tokens and to the places into

which it produces tokens.

Petri nets are often used to model production systems, where a place is seen

as a resource type, the number of tokens on such a place denotes the number

of instances of resources of that type and a transition is used to represent an

activity that consumes and produces resources. However, in this book, since

we use Petri nets as a tool for studying the theory of distributed computation,

the interpretation of places and transitions follows a different intuition: A place

represents a sequential process type, each token on such a place denotes an

instance of a process of that type and a transition represents the evolution of

one or more sequential processes, which possibly interact by synchronizing.

In the literature several different classes of Petri nets have been proposed for

different purposes. Some simple net models include Condition/Event systems

[99] and Elementary net systems [103], where it is required that places can

hold one token at most; or Free choice nets [26], where a net of this sort must

possess a particular structure. Other, more advanced models include, e.g., Nets

with inhibitor arcs [92, 70, 18], where transitions have the capability to test

whether a place contains zero tokens.

Among these many variants, we focus our attention on the following three

classes of Petri nets, which are important as they precisely characterize three

important classes of computational systems:

" Linear nets (also called finite-state machines). The transitions have a spe-

cific, very restricted shape (they consume one token and produce one token

at most), and the initial marking is a singleton, so that all the reachable mark-

ings are singletons. Therefore, this class models sequential systems because

there is only one active sequential process (the unique token around in the

linear net).

" Forking nets (also called BPP nets). The transitions consume one single

token but may produce many tokens; moreover, the initial marking can be

any multiset of local states. Therefore, this class models noncommunicating

parallel systems because the initial marking specifies the collection of initial

sequential processes composing the distributed system, and these processes

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Behavioral Equivalences 3

cannot communicate (as the transitions consume only one token) but can

spawn other processes (as the transitions may produce multiple tokens).

" Petri nets (tout court, also called Place/Transition Petri nets). The transition

may consume multiple tokens and may produce multiple tokens. There-

fore, this class models communicating parallel systems because a transition

consuming multiple tokens models a synchronization among the sequential

processes represented by those tokens.

1.2 Behavioral Equivalences

A net transition is labeled by an action taken from a given alphabet, which

represents its observable content. Hence, the label of net transitions (and,

possibly, also the structure of such transitions) can be used to compare the

behavior of different nets. So a natural question arises: When are two nets to be

considered behaviorally equivalent? The answer to this question is not unique:

We will see in Chapter 5 a rich panorama of the many different equivalences that

have been defined for Petri nets. Nonetheless, we have made a precise choice

by proposing for each class of nets a behavioral equivalence such that it is

(i) resource sensitive, meaning that it relates markings of the same size only;

(ii) causality respecting, meaning that it captures correctly the causal depen-

dencies among the performed events; and, finally,

(iii) decidable, i.e., the equivalence-checking problem can be solved algorith-

mically.

1.2.1 Resource Sensitive

Starting from linear nets, we advocate the use of bisimulation [90, 84] as

the suitable behavioral relation for these nets. However, our definition slightly

deviates from the previous definition in the literature (originally defined on

labeled transition systems) in that it does not consider the empty marking

behaviorally equivalent to a deadlock place, i.e., it distinguishes successful

termination from deadlock. This difference is not irrelevant: As a token denotes

a sequential process that is using a processor, if a transition produces a token in a

deadlock place, then that sequential process is stuck but still uses the processor;

on the contrary, if a transition produces no token at all (i.e., it reaches the empty

marking), then that sequential process has terminated its execution successfully,

so that the processor it was using is now freely available for another sequential

process. From this perspective, we could say that our variant definition of

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

bisimulation is resource sensitive, where the resource we are considering is the

processor.

When considering forking nets, we generalize the definition of bisimulation

to team bisimulation [50, 54], which is still resource sensitive, as it relates

markings of the same size only, so that team bisimulation equivalent noncom-

municating parallel processes use the same amount of computational resources.

When considering Petri nets, we introduce two behavioral equivalences that

generalize team bisimulation, namely place bisimulation [3] and structure-

preserving bisimulation [39], both resource sensitive. The main reason for

proposing the former is its simplicity and the fact that the behavioral equivalence

it induces is decidable for Petri net, while the latter has better mathematical

properties.

Summing up, the first main motivation for our selected equivalences is that

they are resource sensitive.

1.2.2 Time + Space ó Causality

Another common feature of all the selected behavioral equivalences is that they

respect causality.

For linear nets, this is quite obvious: As there is only one token around, the

temporal order of action execution implies the causal order of these actions. In

fact, if a sequential process performs a sequence ��, i.e., two transitions with

labels � and � respectively, then the token consumed by the �-labeled transition

is precisely the one produced by the �-labeled transition. In other words, the

causality relation among the performed actions is directly determined by the

temporal order in which the token is first produced and then consumed. Hence,

the definition of bisimulation on a linear net is causality respecting.

For forking nets, this is less obvious but still easily understandable. Since a

transition consumes only one token, it is enough to take care of the flow of token

production and consumption: If one transition + consumes one token produced

by the previous execution of some transition +2, then the only immediate cause of

+ is exactly +2. To take into account this causality flow, team bisimulation requires

that if two places are related, then the matching transitions of the bisimulation

game should be such that the reached markings are bijectively related by the

team bisimulation relation itself. This implies that the threads of computations

that the independent tokens produce are to be bijectively related by means of

a team bisimulation on the net places. Therefore, the information about the

bijection between the two distributed states (i.e., on the current markings of

interest) and the time ordering in the corresponding computations they perform

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Modal Logic 5

are enough to determine that the actual causal order among the performed

events in these two computations is the same.

For Petri nets, the situation becomes more complex, as the immediate causes

of a transition can be a whole multiset of transitions performed previously in

time. However, rather surprisingly, place bisimulation and structure-preserving

bisimulation, which are both smooth generalizations of the team bisimulation

idea, respect causality, since we will formally prove in Chapter 5 that the very

complex, but largely agreed upon, definitions of causality-respecting behavioral

equivalences (e.g., causal-net bisimulation [39, 54] or fully-concurrent bisim-

ulation [10]) are closely related to the much simpler ones mentioned above. In

fact, one of the goals of this book is to show that causality-respecting behavioral

equivalences can be defined in a rather simple manner over the three classes of

nets we consider.

1.2.3 Why Causality?

One may wonder why causality should be an important feature of a behavioral

equivalence. Some reasons for this choice include at least the following:

" Error recovery. If a bug occurs during a computation, it may not be obvious

to discover what its causes are if the semantics does not make causality

observable. Conversely, if causality is modeled, then one can focus attention

only on the subcomputation that caused the occurrence of the bug, hence

making the fixing much more efficient.

" Performance. If we assume that transitions with the same label take the same

amount of execution time for completion, and if we also assume that each

transition is performed as soon as possible, then two behaviorally equiva-

lent markings perform their tasks in exactly the same execution time if the

behavioral equivalence is causality respecting.

" Verification. The causality-respecting behavioral equivalences we advocate

for forking nets and Petri nets possess better verification algorithms than those

based on so-called interleaving (cf. Chapter 5 for an overview of interleaving

behavioral equivalences). In particular, while interleaving bisimulation is un-

decidable [68] for Petri nets, place bisimulation equivalence is decidable [52].

1.3 Modal Logic

Once the bisimulation-based behavioral equivalence for the class of Petri nets

of interest has been defined, it is interesting to investigate whether it possesses

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction

a modal logic characterization, i.e., whether there exists a modal logic such that

two markings are behaviorally equivalent if and only if they satisfy the same

modal logic formulae. The answer to this question is positive for each of the

three classes of nets.

For linear nets, bisimulation equivalence is characterized logically by a sim-

ple modal logic, called bisimulation modal logic (BML), resembling Hennessy–

Milner logic [62] (HML) but with the ability to distinguish successful termi-

nation from deadlock. For forking nets, team bisimulation equivalence is char-

acterized logically by team modal logic [50] (TML), a suitable extension of

BML with the introduction of an operator of parallel composition of formulae.

For Petri nets, structure-preserving bisimulation equivalence is characterized

logically in a rather complex manner: First, with marking logic (MKL) we can

define formulae that may contain the actual names of places, so that different

markings cannot satisfy the same formulae; then, we define a corresponding

logic, linking logic (LKL), such that structure-preserving bisimulation equiva-

lent markings satisfy not exactly the same formulae but rather corresponding

formulae that are structurally the same but that may differ in the actual choice

of the concrete names of places.

1.4 Process Algebra

The next step is to define a suitable process algebra representing the models

of interest. In fact, for each one of the three classes of nets, we define a

corresponding process algebra such that:

" each term ' of the process algebra is given a semantics in terms of a net

Net(') of that class (only nets of that class can be modeled by the process

algebra); moreover,

" for each net � (#0) of that class (i.e., for each net � with initial marking

#0), we can single out a term ' of the corresponding process algebra,

whose semantics is a net isomorphic to � (#0) (all the nets of that class are

represented by the process algebra, up to net isomorphism); and, finally,

" all the operators of the process algebra are necessary to get these results (no

superfluous operator is introduced).

Therefore, since we argued that each class of nets is meant as a suitable class of

computational systems, our contribution amounts to alphabetizing these three

classes of systems, i.e., providing three process algebras, as simple as possible,

each one representing all and only the computational systems of a certain class.

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.4 Process Algebra 7

Petri nets

� (#0)

Net(')

c

Pet

' = TPet (� (#0))

translation function

net semantics

Figure 1.1 Graphical description of the representability theorem for Petri nets and

the process algebra Pet.

For linear nets, the corresponding process algebra is called Lin, and it is

essentially a variant of finite-state CCS [84, 45], whose operators are the

deadlock process 0, a family of simple processes of the form �.1 that can

perform � and then successfully terminate, action prefixing �.', choice ' + ',

and process constantsÿ, �, . . ., equipped with a definition useful for describing

recursive behavior.

For forking nets, the corresponding process algebra, called Fork, is similar

to BPP [21] and enriches Lin with the binary operator of asynchronous (i.e.,

without synchronization capabilities) parallel composition ' | '; in particular,

in a term �.', the action � may prefix not only a sequential process (as for Lin)

but also a parallel process.

For Petri nets, the corresponding process algebra is called Pet and extends

Fork by enhancing the prefix operator to include atomic sequences of inputs

(besides single inputs and single outputs). It also enhances its parallel compo-

sition operator to allow for communication (according to a generalization to

sequences of the binary, handshake, synchronization discipline of CCS [84, 45])

and by also including the CCS restriction operator (��)' (to force synchro-

nization within '), to be used at the top level only. The combination of input

sequence prefix and parallel composition allows a mechanism for multi-party

synchronization to be implemented, which is modeled as an atomic sequence

of binary, CCS-like synchronizations.

Figure 1.1 describes graphically one of the three representability theorems

in this book, namely that for the case of Petri nets and the process algebra Pet:

Given a marked Petri net � (#0), the translation function TPet (2) maps � (#0)

to the Pet process term ' = TPet (� (#0)); then, the net semantics maps the

term ' to the Petri net Net('), such that Net(') c � (#0), where c denotes net

isomorphism equivalence.

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Introduction

1.5 Compositionality and Congruence

The first great advantage of having a suitable process algebra representing the

models of a certain class of nets, up to isomorphism, is that it provides linguistic

support for this class: A succinct, textual (i.e., linear), implicit representation

of the net model as a term in the process algebra corresponding to the class of

net models. A case study illustrating this fact is described in Section 4.6.4.

Another good reason for developing a process algebra that can describe all

the nets of a certain class is that it allows for compositional modeling and

reasoning. Whenever a complex distributed system is to be modeled by a

net, it is often convenient to identify its sequential subcomponents, to model

each of these separately, to reason on each of them independently of the other

subcomponents, and then, possibly, to derive global properties of the whole

distributed system from the local properties of the sequential subcomponents.

As an instance of the kind of analyses that are possible by compositionality,

suppose a net system is described by the process algebraic term '1 | '2, denot-

ing two processes '1 and '2 composed in parallel. It often happens that the

composite system '1 | '2 satisfies a certain property if this property holds for

the constituents '1 and '2. As an instance of a property of this form, consider

“the system always terminates its computation.” Hence, instead of checking

this property against the large global state space of the composite system, we

can just check if this holds for the two much smaller local state spaces of the

two constituents.

This compositionality reasoning is even more effective when considering

behavioral equivalences that are congruences with respect to the operators

of the process algebra of interest. For instance, when checking whether two

composite systems, say '1 | '2 and '1 | '2, are behaviorally equivalent, it is

much more convenient to check separately whether, e.g., '1 is behaviorally

equivalent to '1, as well as whether '2 is behaviorally equivalent to '2, instead

of checking this on the two much larger global state spaces of '1 | '2 and

'1 | '2, because when the equivalence is preserved by the operator of parallel

composition (i.e., it is a congruence with respect to parallel composition),

then these two local checks are sufficient to ensure that '1 | '2 and '1 | '2

are behaviorally equivalent, too. A case study illustrating the advantage of

compositional reasoning by congruence is described in Section 4.7.3.

Interestingly enough, all the equivalences developed for the classes of nets

considered in this book are congruences for the operators of the corresponding

process algebra, so that for each class of nets we have developed a fully satis-

factory compositional semantics over the terms of the corresponding process

algebra.

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.6 Algebraic Properties and Axiomatization 9

1.6 Algebraic Properties and Axiomatization

One further good reason for developing a process calculus to describe a class

of nets is that it allows for the definition of equational theories (usually called

axiomatizations) characterizing the behavioral congruences of interest. In fact,

by means of an axiomatization, it is possible to offer an alternative, completely

syntactic, technique to prove when two nets are behaviorally congruent.

More precisely, so far, two nets �1 and �2 can be proved behaviorally

congruent by checking whether there exists a suitable behavioral relation over

them; but now, as these two nets are actually represented by suitable terms of the

same process algebra, say '1 and '2, the proof that �1 and �2 are behaviorally

congruent can alternatively be done with a purely syntactical argument, by

showing that the term '1 can be equated with the term '2 by means of some

equational deductive proof.

To do so, first we have to study which algebraic properties that congruence

satisfies, and, based on these, we can possibly define a sound and complete

axiomatization characterizing the behavioral congruence syntactically.

Interestingly enough, all the behavioral equivalences (which are also con-

gruences) developed for the process algebras considered in this book have been

axiomatized (i.e., they have been characterized by a finite set of axioms), even

if, in the case of Petri nets and the corresponding process algebra Pet, this

axiomatization is not complete.

1.7 Structure of the Book

The body of the book consists of six chapters. After this introduction, the next

three all have the same structure and are organized as follows:

(i) First, the class of nets is introduced (linear nets in Chapter 2, forking nets

in Chapter 3, Petri nets in Chapter 4).

(ii) Then, the behavioral equivalences of interest are presented (bisimulation

equivalence in Chapter 2, team bisimulation equivalence in Chapter 3,

place bisimulation and structure-preserving bisimulation equivalences in

Chapter 4).

(iii) A modal logic characterization of these equivalences is then described

(BML in Chapter 2, TML in Chapter 3, MKL and LKL in Chapter 4).

(iv) A suitable process algebra for the corresponding class of nets is introduced

(Lin in Chapter 2, Fork in Chapter 3, Pet in Chapter 4).

(v) A verification that the behavioral equivalences of interest are congruences

is also provided, together with a study of their algebraic properties.

(vi) Finally, an axiomatization of the behavioral congruence is proposed.

www.cambridge.org/9781009613286
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-61328-6 — Syntax and Semantics of Petri Nets
Roberto Gorrieri
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Introduction

Chapter 5 surveys some of the many different behavioral equivalences that

have been proposed in the literature for Petri nets. It also gives the proof that

place bisimulation equivalence and structure-preserving bisimulation equiva-

lence are both causality-respecting behavioral relations. Finally, Chapter 6 hints

at possible extensions of the theory presented in this book.

www.cambridge.org/9781009613286
www.cambridge.org

