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Preface

What This Book Is About

A finite difference (FD) formula is a local approximation, typically of a deriva-
tive, and it consists of weights that can then be applied to the values of arbitrary
functions. Methods based on FD approximations are ubiquitous in modern
scientific computing. They were well established for solving differential equa-
tions over a century ago, when the word “computer” referred to a person with
plenty of paper, pencils, and persistence. From at first amounting to a quite
straightforward use of simple formulas, readily obtained from a few terms in a
Taylor expansion, many specialized FD procedures and refinements have since
been developed. Finite element methods evolved around 1960, and software
packages based on these are nowadays widely used, especially for many engi-
neering applications. Other offsprings include finite volume, spectral element,
and discontinuous Galerkin methods. Two additional major developments be-
gan in the early 1970s. One was to push FD stencils toward increasing sizes
and orders of accuracy, leading to pseudospectral (PS) methods. The other,
focusing on geometric flexibility and allowing for grid-free discretizations,
replaced in their derivations polynomials with radial basis functions (RBFs).
From the latter have more recently evolved RBF-generated FD methods (or
RBF-FD for short), offering FD-like usage, high orders of accuracy, together
with total geometric flexibility and easy implementation in any number of space
dimensions.

There exists already an extensive literature in the forementioned areas. How-
ever, one theme that has not yet received as much attention is the rich middle
ground between low-order and extremely high-order FD-based approximation
methods. Since traditional FD methods (still a workhorse for general scien-
tific computing) are closely related also to approximations of integrals and of
fractional derivatives, some such applications are also described. This book is

ix
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x Preface

additionally motivated by several recent developments in these latter areas. In
spite of its long history, the FD topic is still a rapidly evolving one.

What This Book Is Not About

The methods described here are centered around spatially local approximations
to differential operators and include also some additional contexts where FD-
inspired tools are utilized. Nodes used for discretizations may be grid based or
irregularly distributed – but if so only when that is motivated by physical reasons
(such as irregularly shaped boundaries or a need for locally higher resolution)
rather than as artifacts of any special numerical method. In particular, we do not
discuss any methods related to orthogonal polynomials, where boundary node
clustering is employed purely to control the polynomial Runge phenomenon. FD
spin-offs (such as finite elements, finite volume, and discontinuous Galerkin)
and applications to integral equations are also not described. Furthermore,
this book is not a place to look for functional analysis or for elaborate error
estimates.

Brief Summary of the Main Chapters

1. Introduction to FD Methods: The history of FD approximations goes back
further than that of calculus. The classical definition of a derivative
is in itself an example of a very simple (and quite inaccurate) FD
formula. While many of its basic properties follow quite immediately
from Taylor expansions, numerous additional perspectives are very
helpful in appreciating the method’s strengths (and weaknesses).

2. Brief Summary of PS Methods: FD approximations of increasing orders
of accuracy require larger stencil sizes. The limiting case has numerous
important applications, which have been extensively treated in the
literature. Our present summary aims more to provide some general
insights into the pros and cons of pushing up the accuracy order than
to describe PS implementations and technicalities.

3. FD Approximations for Ordinary Differential Equations (ODEs): The
most common reason for wanting to approximate derivatives is to ap-
ply these to the solution of differential equations. In the case of ODEs,
many of the well-established procedures are immediately related to
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Preface xi

FD approximations – often more closely than may be apparent from
how these are customarily described.

4. Grid-based FD Approximations for Partial Differential Equations:
Although a variety of PDE solvers have been developed for different
applications, quite straightforward FD-based approximations remain
of great utility and importance. As for ODEs, high orders of accuracy
often significantly increase computational efficiency.

5. Mesh-Free FD Approximations: In all the cases above, the core concept
behind the FD approximations has been Taylor expansions. These are
easy to work with and are in some sense optimal in their representa-
tions of functions locally around a single point. However, polynomial-
based approximations in more than one dimension encounter severe
difficulties if the points that approximations are based on are not regu-
larly placed (grid based). Difficulties in solving differential equations
often come from boundaries that may be irregularly shaped and from
mixtures of scales that may require spatially variable resolution. It
transpires that RBFs can replace (or supplement) polynomials in such
situations, again leading to highly effective and accurate FD-type ap-
proximations.

6. FD in the Complex Plane: Measurable physical quantities do not involve
complex numbers.1 However, with most standard and special functions
in the applied sciences being analytic functions, both mathematical
analysis and computational procedures can benefit greatly from ex-
ploiting this feature. While such mathematical tools have seen much
use during the last couple of centuries, the realization is far more
recent that FD methods in the complex plane can also be remarkably
effective.

7. FD-based Methods for Quadrature and Infinite Sums: This is again an
area where commonly used methods on equispaced grids (the setting
in which data is often available if not created just for the purpose of
quadrature) relate closely to FD approximations. Complex plane FD
approximations can be used for highly accurate contour integration of
analytic functions.

8. Fractional-Order Derivatives: Although their history is nearly as long as
that of regular (integer-order) derivatives, their range of applications
has increased dramatically in recent decades. High-order accurate FD
methods for their approximation amount to a recent development.

The main chapters are followed by seven appendices with supporting back-
1 unless possibly in the context of quantum mechanics.
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xii Preface

ground materials, also focused on heuristic insights and application practicali-
ties.

Audience for Whom the Book Is Written

This book is primarily aimed toward students and researchers who are interested
or actively engaged in scientific computing. For most of the material, no more
background is needed than basic calculus and some knowledge of numerical
analysis, linear algebra, and complex variables. This book is not intended as a
sole textbook for an introductory numerical analysis or numerical differential
equations course, but more for a graduate course aimed at providing the supple-
mentary insights and perspectives that are essential for a good understanding,
but which too often fall in the cracks between traditional course materials. This
book will also provide educators with additional perspectives to those focused
on in many textbooks.

Some General Remarks

Books with extensive mathematical content need to find a balanced path be-
tween rigor and heuristics. We tilt here quite strongly in favor of the latter, as
this much more closely reflects how actual scientific computing is designed
and carried out. The goal has been to present the relevant materials, not in
some form of cookbook fashion, but instead to highlight the essential concepts
behind different cost-effective FD-type computational opportunities. Another
aspect for which a balanced path needs to be found is how much background
material to include – that is, between presenting in a too terse fashion versus
bloating the manuscript with topics that many readers may find unnecessary. In
this regard, we tilt somewhat toward the former. In some cases, we only alert
readers to computational opportunities, leaving details to cited references and
to the appendices.

When developing a numerical solution strategy and a code for an application,
it is often practical to start with low-order approximations, to most easily
“get into the business.” It will then often transpire that higher computational
efficiency is needed, calling for the second step of upgrading to higher-order
accurate approximations. A goal for this book is to provide perspectives for this
second step.
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