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The classic order relation in Combinatorial Game Theory asserts that, given a

winning convention, a game is greater than or equal to another whenever Left

can exchange the second for the first in any disjunctive sum, and she can do

this regardless of the other component, without incurring any disadvantage. In

the early developments of Combinatorial Game Theory, the “other component”

encompassed any possible game form, and a rich normal play theory was built

by Berlekamp, Conway, and Guy (1976–1982), via a celebrated local compar-

ison procedure. It turns out that the normal play convention is a lucky case,

and recent research on other conventions therefore often restricts the ranges

of games to various subclasses. In the case of misère play, it is possible to

obtain partially ordered monoids with more structure by imposing restrictions.

The same is true in scoring play. Furthermore, Absolute Combinatorial Game

Theory was recently developed as a unifying tool for a local game comparison

that generalizes the normal play findings, provided that the restricting set is

parental (among a few other closure properties), meaning that any pair of

finite, nonempty subsets of games from the restriction is permissible as sets

of options for another game in the set. This survey aims to provide a concise

overview of the current advancements in the study of these structures.

1. Background and purpose of the overview

Combinatorial games are two-player games with perfect information (no hidden

information as in some card games) and no chance moves (no dice), where the

players move alternately. When the current player has no more moves, the game
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ends and some given convention determines the result. Combinatorial Game

Theory (CGT) is the branch of mathematics that studies combinatorial games.

The classic order relation in Combinatorial Game Theory asserts that, given a

winning convention, a game is greater than or equal to another whenever Left

can exchange the second for the first in any disjunctive sum, and she can do

this regardless of the other component, without incurring any disadvantage. In

the early developments of Combinatorial Game Theory, the “other component”

encompassed any possible game form, and a rich normal play theory was built

by Berlekamp, Conway and Guy (1976–1982), via a celebrated local comparing

procedure: “G ⩾ H if and only if Left wins G − H playing second”. It turns

out that the normal play convention is a lucky case, and recent research on other

conventions therefore often restricts the ranges of games to various subclasses.

In the case of misère play, it is possible to obtain partially ordered monoids

with more structure by imposing restrictions. The same is true in scoring play.

Furthermore, Absolute Combinatorial Game Theory [Larsson et al. 2025b] was

recently developed as a unifying tool for a local game comparison that generalizes

the normal play findings, provided that the restriction is parental (among a few

other closure properties), meaning that any pair of finite, nonempty subsets of

games from the restriction is permissible as sets of options for another game in

the set.1 This survey aims to provide a concise overview of current advancements

in the study of these structures.

We will be interested in short games and we assume familiarity with basic

CGT concepts such as winning conventions, game forms, options, followers,

outcomes, disjunctive sum, game inequality, game equivalence, game reductions,

canonical forms, and so on. All of these concepts are presented and discussed

in the classic references [Albert et al. 2007; Berlekamp et al. 1982a; 1982b;

Conway 1976; Siegel 2013]. We intend for this to be a reasonably advanced

survey. If you are a reader unfamiliar with CGT, acquiring knowledge of the

fundamental concepts in the specialized literature will be necessary.

Under the normal play convention, it is well known that G ≽ 0 if and only

if G ∈ L ∪ P, and we will refer to this result as the Fundamental Theorem of

Normal Play (FTNP). The ultimate reason for this theorem is that if Left has a

winning strategy in a game X , then she also has it in G + X . She can use a “local

response strategy”, meaning that, in G + X , Left responds to Right’s moves in

1There are almost as many naming conventions in this thrilling new study as there are coauthors;

the two emphasized terms in this sentence have various other suggestive namings as follows: the

term “local” is synonymous with constructive, algorithmic, recursive, computable, and play in

various works within the literature, and the term “parental” is synonymous with dicotic-closed and

absolute. In the near future, we hope for some agreement on various concepts. For now, we are

satisfied to explain their contexts.
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COMBINATORIAL GAME THEORY MONOIDS: A SURVEY 3

a component with a move in that same component, as if she were playing it in

isolation. Under the normal play convention, Left will make the last move in both

components, and, consequently, in the disjunctive sum as a whole. The FTNP

is sufficient to prove that there is a perfect matching between the order relation

and the outcome classes. That is: G ≻ 0 if and only if G ∈ L ; G = 0 if and

only if G ∈ P; G ∥ 0 if and only if G ∈ N ; and G ≺ 0 if and only if G ∈ R. It

is also well known that all game forms have inverses, meaning that game forms,

together with the disjunctive sum, form a group structure.

By writing −G = {−GR | −GL} to denote the conjugate of G, i.e., the game

in which players’ roles are reversed, it is straightforward to verify that G−G ∈P ,

which means that G−G = 0. This time, instead of the local response strategy, the

argument employs an opposite strategy commonly referred to as the Tweedledee–

Tweedledum strategy. Whenever a player makes a move in one component,

the opponent plays the symmetrical move in the other component. This use of

symmetry ensures the last move for the player who plays second. Even when

considering other conventions, for the sake of simplicity in writing, we will

continue to denote {−GR | −GL} as −G, even though it may not be the inverse

of G in other contexts. With the notion of conjugate in mind, the FTNP is also

sufficient to provide an easy local way to compare G with H . To determine

if G ≽ H , one simply needs to check if Left wins the game G−H playing second.

All of these concepts are specific to normal play, and this is important for what

will follow. Local response strategies, Tweedledee–Tweedledum strategies, the

matching between the order relation and the outcomes, and the group structure are

all things that are lost in other conventions. Following the previous observations,

regarding the normal play convention, the following list of facts has long been

known and was first detailed in [Berlekamp et al. 1982a; 1982b; Conway 1976].

Some terminology, and the subdivision of item (2) into four parts is ours. We

wish to highlight the idea of this subdivision, because it generalizes normal play

to other settings.

(1) There is a local comparison procedure, which involves evaluating whether

Left wins the game G − H playing second. In other words, G ≽ H if and

only if

(i) for each G R ∈ GR, there is a G RL ∈ GLR such that G RL − H ≽ 0 or

there is an H R ∈ HR such that G R − H R ≽ 0, and

(ii) for each H L ∈ HL, there is a GL ∈ GL such that GL − H L ≽ 0 or there

is an H L R ∈ H LR such that G − H L R ≽ 0.

(2) There are four types of reductions:

(i) Domination: If G is a game with two Left options GL1, GL2 ∈ GL and

GL2 ≽ GL1 , then G = {GL \ {GL1} | GR}.
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(ii) Nonatomic Reversibility: If G is a game with a Left option GL ∈ GL

and there is a GL R such that G ≽ GL R , then, if GL RL is nonempty,

G = {GL \ {GL}, GL RL | GR}.

(iii) Atomic Reversibility: If G is a game with a Left option GL ∈ GL

and there is a GL R such that G ≽ GL R , then, if GL RL is empty, G =

{GL \ {GL} | GR}.

(iv) Replacement by Zero: If G = {GL | G R} is a game with a single move

for each player, and both GL and G R are atomic reversible options,

then G = 0.

Consider any game form under normal play. By exhaustively applying these

reductions, in any order, the end product is unique, and is referred to as the

game’s canonical form.

(3) All games are invertible, and the inverse of a game G is its conjugate −G.

In normal play, the three latter reductions in item (2) merge into one, since

the statement of nonatomic reversibility encompasses both atomic reversibility

and replacement by zero. So, in that case, only the two reductions of domination

and reversibility are mentioned in the literature.

In misère play, some items from the list fail or may require some modification.

Nevertheless, when considering different classes of distinguishing games, it is

possible to find monoids with some very interesting properties. In addition to

the full universe of games (M), the universes of dead-ending (E) and dicotic (D)

games are notable examples.

Also, in scoring play, some items from the list fail. In this case, besides the

full universe of games (or the Stewart universe, S), notable examples include the

universe of guaranteed scoring games (Gs) and the Ettinger universe (E). We

will detail later the fact that the replacement by zero is always valid in classical

nonscoring restrictions but may fail under the scoring play convention.

In this document, while adapting to literature, these universes are denoted

by M, E , D, S, Gs, and E, respectively. It is important to emphasize that if,

for example, a section pertains to D, the symbol ≽ will refer to the inequality

defined in D, avoiding the need to write ≽D. This type of restriction is commonly

referred to in the literature as modulo D. In other words, if a section is about a

specific universe U , everything mentioned in that section will be modulo U .

The concept of a universe of games is fundamental. A universe is a set

(possibly a restriction) of games under a given convention that satisfies standard

closure properties.

The idea of studying these restrictions originates from what we informally

call the waiting problem. Consider misère play, and suppose that Left has no

options in a game G, i.e., G is a Left-end. When playing first in misère play,
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COMBINATORIAL GAME THEORY MONOIDS: A SURVEY 5

Left wins G when played in isolation. But when played together with another

game H , written as G + H , then there is the possibility that Left has to play

to some G + H L . Now, Right, who was waiting for the opportunity, can play

in G, say to G R + H L . That move can lead to Left’s defeat, with the moves that

Left has to make in a follower of G being the decisive factor in her loss. The

game G = {∅ | 3}, in which Left has no moves, but where Right can give Left

three consecutive moves, is an example of a game that may cause this problem. In

general, occurrences of the waiting problem reduce the richness of mathematical

structure, resulting in fewer smaller equivalence classes of games born by a given

birthday, and so on. Fortunately, some restrictions prevent the occurrence of this

problem and, as a bonus, invite many recreational-play rulesets.

A game is a dicot if, in each subposition, either both players can move, or

neither player can move. It is easy to observe that games such as {∅ | 3} are

not dicots, and consequently the waiting problem does not occur in a dicotic

universe/restriction. A game is dead-ending if, whenever a player has no available

move at a subposition, they have no move in any follower of that subposition.

Again, it is easy to observe that games such as {∅ | 3} are not dead-ending, and

hence the waiting problem does not occur in a dead-ending universe/restriction.

Of course, every dicot is also dead-ending, but the converse is not true. These

classes eliminate the waiting problem, as the defining properties ensure that a

player cannot play again in a component after running out of moves in it.

Regarding scoring play, the Ettinger universe is dicotic. In this universe, when

a player runs out of moves in a component, the resulting score is some real

number, and both players are left with no moves in that component. On the other

hand, the universe of guaranteed scoring is analogous to a dead-ending universe

from nonscoring theory. When a player runs out of moves in a component, if

that component were played in isolation, a final score s ∈ R would be obtained.

The guaranteed property assures that, with other components in play, the score

of s in that component cannot become worse with respect to that player, even if

play continues there. The waiting problem is again avoided.

Each of these restrictions has its algebraic structure, with larger equivalence

classes than the corresponding full universe, and their analyses have been con-

ducted over the years, as we will detail further below. Related to this type of

research, an important event was the development of Absolute Combinatorial

Game Theory [Larsson et al. 2025b]: a unifying additive theory for standard

restrictions in CGT. The main result of this is so crucial for this survey that we

will begin to detail it now, starting with some general definitions. Absolute theory

encompasses all so-called parental (also called dicotic-closed) universes: any

game form constructed with a pair of nonempty finite sets of elements from the

universe, as Left and Right options respectively, is also an element of the universe.
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Definition 1 (Maintenance). Let G and H be games in a universe U . The pair

(G, H) satisfies the maintenance, Maint(G, H), if

∀G R(∃G RL such that G RL
≽U H or ∃H R such that G R

≽U H R)

and

∀H L(∃H L R such that G ≽U H L R or ∃GL such that GL
≽U H L).

It is helpful to decompose the standard outcomes, to take an explicit note of the

winner depending on who starts, and we write o = (oL , oR), with oL , oR ∈ {L, R}.

so that for example, L = (L, L), N = (L, R), and so on. Here, the convention

is the total order L > R. In absolute theory, we usually call Left-ends instead

Left-atomic games (roughly, atoms can be adorned with a “score”). Here, we

use the two terms interchangeably.

Definition 2 (Proviso). Let G and H be games in a universe U . The pair (G, H)

satisfies the proviso Proviso(G, H) if the following two items hold:

(i) if H is Left-atomic, then, for any Left-atomic X , oL(G + X)⩾ oL(H + X);

(ii) if G is Right-atomic, then, for any Right-atomic X , oR(G+X)⩾oR(H+X).

Theorem 3 (Absolute Comparison). Let U be a parental universe. Then G ≽U H

if and only if Maint(G, H) and Proviso(G, H).

The absolute comparison gives rise to four observations. Firstly, note that, in

normal play, if HL is empty, then the first item of the proviso is trivially satisfied,

since oL(H + X)= R. On the other hand, if GR is empty, then the second item of

the proviso is trivially satisfied, since oR(G + X) = L. Consequently, in normal

play, if Maint(G, H), then G ⩾ H . In other words, the exception never occurs,

and the proviso is unnecessary.

The second observation is that the exception of the proviso usually occurs

in restrictions under the misère and scoring play conventions. For example,

in D, Maint({0 | ∗}, 0) holds but Proviso({0 | ∗}, 0) does not. Therefore, the

issue arises that the absolute proviso involves all possible Left-ends and all

possible Right-ends, which are obviously infinite in number. Fortunately, recent

research has revealed that it is often not necessary to test all Left-ends and

Right-ends, but only a few relevant ones. We have a local comparison procedure

whenever it is possible to consider only a finite number of ends. Such a procedure

is of utmost importance both in practice and theory. Therefore, an “absolutely”

crucial question is the following.

Question 1. Given a parental universe, how/when can the proviso be reduced to

a finite number of tests?

The third observation once again involves Left-ends and Right-ends; somehow,

handling the empty set of options is one of the most delicate tasks in CGT. The
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main reason why the proviso is necessary when the convention is not normal

play is due to the fact that the absence of options can be advantageous for a

player. Having no moves can be beneficial under the misère play convention,

because it may signify victory, and having no moves in scoring play can imply

obtaining a high score. Thus, issues related to atomic reversibility arise. Let us

start by analyzing the reversibility condition. If G ≽ GL R , then in a disjunctive

sum G + X , Left never plays to GL + X with the intention of responding to

GL R + X L from a Right move to some GL R + X . This is because it is no worse

to move directly to G + X L , as the condition implies G + X L ≽ GL R + X L .

This means that Left only chooses GL + X if she intends to respond locally, in a

follower of G, in case Right responds to GL R + X . This is what is almost always

referred to in the specialized literature and is indeed the concept that underlies

reversibility.

Yet there is another idea that is less frequently mentioned, but is equally

important. It arises from the following question: “When should Left play to

GL + X , if GL is an atomic reversible option, that is, if GL RL = ∅, for some

GL R ≼G?” If XL is not empty, then there is an X L ∈ XL such that oR(GL +X)≼

oR(G + X L). This is because

oR(GL + X) ≼ oL(GL R + X) (arbitrary choice)

= oR(GL R + X L) (best choice, GL R is a Left-end)

≼ oR(G + X L) (reversibility condition).

In other words, in game practice Left rarely needs to opt for an atomic reversible

option. She only chooses such an option in a disjunctive sum if all the other

components are Left-ends. However, in these cases, the atomic reversible option

may be the only winning move, and as a result, except in a few cases where it is

a sole option, it cannot reverse out. Nevertheless, it may be possible to replace

it with a simpler atomic reversible option that allows for obtaining a useful

“canonical form”. In summary, an interesting choice for the replacement may

be made or, at the very least, a method of making that choice can be indicated.

Hence, a second crucial question arises.

Question 2. Given a parental universe, how and when can we solve atomic

reversibility?

The fourth observation concerns invertible game forms. For some restrictions,

the approach was to start by proving the Conjugate Property, establishing that,

if G is invertible, then its inverse is −G. With that, in some cases, a simple

characterization of the invertible elements of the structure was also proved. Thus,

a third crucial question is the following.
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Question 3. Is it true that the elements of a given parental universe satisfy the

Conjugate Property, meaning that the inverse of each invertible element is its

conjugate? Is there a simple way to characterize the invertible elements of the

universe?

In normal play there is a unique canonical form (after exhaustive reductions

in any order). It turns out that this is a fairly unique situation and, in general,

one does not a priori get a unique form after reductions. For further discussion

on this topic, we recommend [Larsson et al. 2016], [Larsson et al. 2025a], and

in particular [Siegel 2025]. See also Section 5.2.

The upcoming overview follows a straightforward logic. It will elucidate the

findings and responses that have evolved throughout the course of research to

tackle the three first mentioned questions, henceforth denoted as Q1, Q2, and Q3.

A concise summary of this overview is provided in Table 1.

Before we proceed, it is important for the reader to be aware of certain

nomenclature issues. Often, when embarking on mathematical research in a new

subject, different names may arise for the same concepts. The subject covered in

this survey is no exception. For “local comparison”, at least four other terms have

been used: “subordinate comparison”, “recursive comparison”, “play comparison”

and “constructive comparison”. For the terms “end”, “Left-end” and “Right-

end”, the terms “atomic”, “Left-atomic”, and “Right-atomic” have also been

used. “Nonatomic reversibility” and “atomic reversibility” have been referred

to as “open reversibility” and “end-reversibility”. “Maintenance” has also been

mentioned as “common normal part”. Instead of “parental universe”, the term

“dicotic closed universe” has been used. In fact, a universe was originally defined

as a class of game forms satisfying option closure, disjunctive sum closure, and

conjugate closure, and containing the terminal positions. Recently, it has been

proposed that the word “universe” be used only for parental universes. In this

survey, we have made agnostic choices for each of these concepts. It is natural

that, as the theory develops, these choices will become more stabilized in the

specialized literature.

2. The misère play convention

The classical conventions are normal play and misère play. As mentioned, normal

play does not require any special treatment in terms of restrictions. This section

concerns popular restrictions of misère play.

2.1. Full misère, M. For a long time, partizan games in misère play were

considered essentially intractable. Then, in 2007, Mesdal and Ottaway [2007]

showed the following highly relevant theorem concerning the full universe M of

misère play. Necessarily, this must be the starting point of this section.
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Theorem 4. If G and H are misère games such that HL = ∅ and GL ̸= ∅, then

G ̸≽ H.

In brief, the theorem by Mesdal and Ottaway indicates that G can only be

greater than or equal to a Left-end H if it is also a Left-end itself. Of course,

by symmetry, adopting Right’s perspective, we also have that if GR = ∅ and

HR ̸= ∅, then G ̸≽ H . This result implies the following corollary, which states

that every nonterminal game form is distinct from zero.

Corollary 5. Let G be a misère game. If G ≇ {∅ |∅}, then G ̸= 0.

Corollary 5 immediately answers Q3: the only invertible game form is the

terminal 0 = {∅ |∅}. That is, M is a monoid with no invertible elements other

than the identity (otherwise known as a reduced monoid). Naturally, M satisfies

the Conjugate Property, but in a trivial and unenlightening way.

Another interesting consequence of Theorem 4 pertains to the proviso. The

proviso is a fundamental concept used in Theorem 3, but this consequence

was not mentioned, as absolute theory had not yet been developed. Consider a

pair (G, H) where HL = ∅ =⇒ GL = ∅ and GR = ∅ =⇒ HR = ∅, meaning

that H cannot be a Left-end without G being one, and G cannot be a Right-end

without H being one. It is relatively easy to prove that, under the misère play

convention, a pair meeting these conditions and satisfying the maintenance also

satisfies the proviso. Therefore, the answer to Q1 also follows from Theorem 4;

if (G, H) does not belong to this family of pairs, then inevitably G ̸≽ H . The

proviso in M is as restrictive as it can be.

Proviso of M:

(i) if HL = ∅ then GL = ∅;

(ii) if GR = ∅ then HR = ∅.

Siegel [2015] then determined the full mathematical structure of M. We

observe once again that Theorem 4 led to an understanding of the reductions

in M and, consequently, to the establishment of canonical forms. The reason

for this lies in the fact that it is easy to verify that atomic reversibility and

replacement by zero are reductions that never occur, thus answering question Q2.

The rationale behind this is that it would imply the reversibility criterion G ≽GL R

where GL RL is empty, which is something that the aforementioned theorem

indicates cannot happen (GL R is a Left-end, and G is not). Therefore, just as

in the case of the normal play convention, reversibility can be uniquely stated

through the statement of nonatomic reversibility. In summary, in both normal

play and misère play, reversibility has the same statement. However, in the

former convention, there can be options reversing out, while in the latter, that

case never occurs. The fact that the reductions are the same in both conventions,
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although for different reasons, may have led to initial misunderstandings and

a delay in the mathematical development of other restrictions that require four

reductions instead of two.

2.2. Dicotic misère, D. The best way to start this section is by addressing Q1.

This is because there are no dicots that are Left-ends or Right-ends, except for

the terminal form 0 = {∅ |∅}. Therefore, the proviso reduces spectacularly.

Proviso of D:

(i) if H = 0, then oL(G) = L;

(ii) if G = 0, then oR(H) = R.

Another statement for the proviso Proviso(G, H) is that o(G) ⩾ o(H); see

[Larsson et al. 2021]. As for the answer to Q1, the best reference is [Larsson

et al. 2021].

The decisive breakthrough related to the study of the algebra of D, particularly

the answer to Q2, occurred with the publication of [Dorbec et al. 2015]. They

prove that atomic reversibility has an independent status: an atomic reversible

option should be replaced by ∗ = {0 | 0} if it is the only winning option when

played in isolation. Typically, an option like that cannot be entirely removed (as

in normal play); in endgames, it may be the only way to win. For example, in

the form {0, ∗ | ∗}, the Left option ∗ cannot reverse out, unlike in normal play. In

misère play, when playing {0, ∗ | ∗} in isolation, ∗ is the only winning choice for

Left. Note also that when the atomic reversible option is the sole option, it cannot

reverse out without the form ceasing to be dicotic. The exception is the form

{∗ | ∗} = 0, subject to the reduction replacement by zero. It is the only case in

which the game, after the reduction, does not cease to be dicotic, as both options

of the form reverse out simultaneously. It is this simultaneity that explains the

particular nature of this reduction and the reason why it is highlighted from the

others. By these concepts, useful canonical forms are easy to obtain.

Regarding Q3 and the nature of invertible elements, it was proven in [Larsson

et al. 2025a] that D satisfies the Conjugate Property. With the help of this fact, it

was further demonstrated in [Fisher et al. 2022] that a dicotic canonical form G

is invertible if and only if all followers G ′ satisfy G ′ − G ′ is no P-position.

2.3. Dead-ending misère, E . Regarding the algebraic structure of E , Milley and

Renault [2013] established a first fundamental result, that the ends are invertible,

with their inverses being their conjugates. For n > 0, interesting particular cases

are the forms n = {n − 1 |∅} and n = {∅ | n − 1}, corresponding to situations

where Left (Right) has to make n consecutive moves with no alternative at their

disposal. Naturally, 0 = 0 = {∅ |∅} is the identity (Figure 1 illustrates the game

trees of some of these forms).
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