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Banach Spaces

The foundations of modern Analysis were laid in the early decades of the twentieth

century, through the work of Maurice Fréchet, Ivar Fredholm, David Hilbert, Henri

Lebesgue, Frigyes Riesz, and many others. These authors realised that it is fruitful to

study linear operations in a setting of abstract spaces endowed with further structure to

accommodate the notions of convergence and continuity. This led to the introduction of

abstract topological and metric spaces and, when combined with linearity, of topological

vector spaces, Hilbert spaces, and Banach spaces. Since then, these spaces have played

a prominent role in all branches of Analysis.

Stefan Banach, 1898–1945

The main impetus came from the study of or-

dinary and partial differential equations where

linearity is an essential ingredient, as evidenced

by the linearity of the main operations involved:

point evaluations, integrals, and derivatives. It

was discovered that many theorems known at

the time, such as existence and uniqueness re-

sults for ordinary differential equations and the

Fredholm alternative for integral equations, can

be conveniently abstracted into general theorems

about linear operators in infinite-dimensional

spaces of functions.

A second source of inspiration was the discov-

ery, in the 1920s by John von Neumann, that the

– at that time brand new – theory of Quantum Mechanics can be put on a solid math-

ematical foundation by means of the spectral theory of selfadjoint operators on Hilbert

spaces. It was not until the 1930s that these two lines of mathematical thinking were

brought together in the theory of Banach spaces, named after its creator Stefan Banach

(although this class of spaces was also discovered, independently and about the same

time, by Norbert Wiener). This theory provides a unified perspective on Hilbert spaces
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2 Banach Spaces

and the various spaces of functions encountered in Analysis, including the spaces C(K)

of continuous functions and the spaces Lp(Ω) of Lebesgue integrable functions.

1.1 Banach Spaces

The aim of the present chapter is to introduce the class of Banach spaces and dis-

cuss some elementary properties of these spaces. The main classical examples are only

briefly mentioned here; a more detailed treatment is deferred to the next two chapters.

Much of the general theory applies to both the real and complex scalar field. Whenever

this applies, the symbol K is used to denote the scalar field, which is R in the case of

real vector spaces and C in the case of complex vector spaces.

1.1.a Definition and General Properties

Definition 1.1 (Norms). A normed space is a pair (X ,‖ · ‖), where X is a vector space

over K and ‖ ·‖ : X → [0,∞) is a norm, that is, a mapping with the following properties:

(i) ‖x‖= 0 implies x = 0;

(ii) ‖cx‖= |c|‖x‖ for all c ∈K and x ∈ X ;

(iii) ‖x+ x′‖6 ‖x‖+‖x′‖ for all x,x′ ∈ X .

When the norm ‖ · ‖ is understood we simply write X instead of (X ,‖ · ‖). If we wish

to emphasise the role of X we write ‖ · ‖X instead of ‖ · ‖.

The properties (ii) and (iii) are referred to as scalar homogeneity and the triangle

inequality. The triangle inequality implies that every normed space is a metric space,

with distance function

d(x,y) := ‖x− y‖.

This observation allows us to introduce notions such as openness, closedness, com-

pactness, denseness, limits, convergence, completeness, and continuity in the context of

normed spaces by carrying them over from the theory of metric spaces. For instance,

a sequence (xn)n>1 in X is said to converge if there exists an element x ∈ X such that

limn→∞ ‖xn − x‖ = 0. This element, if it exists, is unique and is called the limit of the

sequence (xn)n>1. We then write limn→∞ xn = x or simply ‘xn → x as n → ∞’.

The triangle inequality (ii) implies both ‖x‖−‖x′‖6 ‖x−x′‖ and ‖x′‖−‖x‖6 ‖x′−

x‖. Since ‖x′− x‖ = ‖(−1) · (x− x′)‖ = ‖x− x′‖ by scalar homogeneity, we obtain the

reverse triangle inequality
∣
∣‖x‖−‖x′‖

∣
∣6 ‖x− x′‖.

It shows that taking norms x 7→ ‖x‖ is a continuous operation.
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1.1 Banach Spaces 3

If limn→∞ xn = x and limn→∞ x′n = x′ in X and c ∈ K is a scalar, then ‖cxn − cx‖ =

‖c(xn − x)‖= |c|‖xn − x‖ implies

lim
n→∞

‖cxn − cx‖= 0.

Likewise, ‖(xn +x′n)− (x+x′)‖= ‖(xn −x)+(x′n −x′)‖6 ‖xn −x‖+‖x′n −x′‖ implies

lim
n→∞

‖(xn + x′n)− (x+ x′)‖= 0.

This proves sequential continuity, and hence continuity, of the vector space operations.

Throughout this work we use the notation

B(x0;r) := {x ∈ X : ‖x− x0‖< r}

for the open ball centred at x0 ∈ X with radius r > 0, and

B(x0;r) := {x ∈ X : ‖x− x0‖6 r}

for the corresponding closed ball. The open unit ball and closed unit ball are the balls

BX := B(0;1) = {x ∈ X : ‖x‖< 1}, BX := B(0;1) = {x ∈ X : ‖x‖6 1}.

Definition 1.2 (Banach spaces). A Banach space is a complete normed space.

Thus a Banach space is a normed space X in which every Cauchy sequence is con-

vergent, that is, limm,n→∞ ‖xn − xm‖ = 0 implies the existence of an x ∈ X such that

limn→∞ ‖xn − x‖= 0.

The following proposition gives a necessary and sufficient condition for a normed

space to be a Banach space. We need the following terminology. Given a sequence

(xn)n>1 in a normed space X , the sum ∑n>1 xn is said to be convergent if there exists

x ∈ X such that

lim
N→∞

∥
∥
∥x−

N

∑
n=1

xn

∥
∥
∥= 0.

The sum ∑n>1 xn is said to be absolutely convergent if ∑n>1 ‖xn‖< ∞.

Proposition 1.3. A normed space X is a Banach space if and only if every absolutely

convergent sum in X converges in X.

Proof ‘Only if’: Suppose that X is complete and let ∑n>1 xn be absolutely convergent.

Then the sequence of partial sums (∑n
j=1 x j)n>1 is a Cauchy sequence, for if n > m the

triangle inequality implies

∥
∥
∥

n

∑
j=1

x j −
m

∑
j=1

x j

∥
∥
∥=

∥
∥
∥

n

∑
j=m+1

x j

∥
∥
∥6

n

∑
j=m+1

‖x j‖,

which tends to 0 as m,n → ∞. Hence, by completeness, the sum ∑n>1 xn converges.
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4 Banach Spaces

‘If’: Suppose that every absolutely convergent sum in X converges in X , and let

(xn)n>1 be a Cauchy sequence in X . We must prove that (xn)n>1 converges in X .

Choose indices n1 < n2 < .. . in such a way that ‖xi − x j‖ < 1
2k for all i, j > nk,

k = 1,2, . . . The sum xn1
+∑k>1(xnk+1

− xnk
) is absolutely convergent since

∑
k>1

‖xnk+1
− xnk

‖6 ∑
k>1

1

2k
< ∞.

By assumption it converges to some x ∈ X . Then, by cancellation,

x = lim
m→∞

(

xn1
+

m

∑
k=1

(xnk+1
− xnk

)
)

= lim
m→∞

xnm+1
,

and therefore the subsequence (xnm)m>1 is convergent, with limit x. To see that (xn)n>1

converges to x, we note that

‖xm − x‖6 ‖xm − xnm‖+‖xnm − x‖→ 0

as m → ∞ (the first term since we started from a Cauchy sequence and the second term

by what we just proved).

The next theorem asserts that every normed space can be completed to a Banach

space. For the rigorous formulation of this result we need the following terminology.

Definition 1.4 (Isometries). A linear mapping T from a normed space X into a normed

space Y is said to be an isometry if it preserves norms. A normed space X is isometrically

contained in a normed space Y if there exists an isometry from X into Y .

Theorem 1.5 (Completion). Let X be a normed space. Then:

(1) there exists a Banach space X containing X isometrically as a dense subspace;

(2) the space X is unique up to isometry in the following sense: If X is isometrically

contained as a dense subspace in the Banach spaces X and X, then the identity

mapping on X has a unique extension to an isometry from X onto X.

Proof As a metric space, X = (X ,d) has a completion X = (X ,d) by Theorem D.6. We

prove that X is a Banach space in a natural way, with a norm ‖ · ‖X such that d(x,x′) =

‖x− x′‖X . The properties (1) and (2) then follow from the corresponding assertions for

metric spaces.

Recall that the completion X of X , as a metric space, is defined as the set of all

equivalence classes of Cauchy sequences in X , declaring the Cauchy sequences (xn)n>1

and (x′n)n>1 to be equivalent if limn→∞ d(xn,x
′
n) = limn→∞ ‖xn − x′n‖ = 0. The space X

is a vector space under the scalar multiplication

c[(xn)n>1] := [c(xn)n>1]
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1.1 Banach Spaces 5

and addition

[(xn)n>1]+ [(x′n)n>1] := [(xn + x′n)n>1],

where the brackets denote the equivalence class.

If (xn)n>1 is a Cauchy sequence in X , the reverse triangle inequality implies that the

nonnegative sequence (‖xn‖)n>1 is Cauchy, and hence convergent by the completeness

of the real numbers. We now define a norm on X by

‖[(xn)n>1]‖X := lim
n→∞

‖xn‖.

Denoting by d the metric on X given by d(x,x′) := limn→∞ d(xn,x
′
n), where x = (xn)n>1

and x′ = (x′n)n>1, it is clear that d(x,x′) = ‖x− x′‖X .

1.1.b Subspaces, Quotients, and Direct Sums

Several abstract constructions enable us to create new Banach spaces from given ones.

We take a brief look at the three most basic constructions, namely, passing to closed

subspaces and quotients and taking direct sums.

Subspaces A subspace Y of a normed space X is a normed space with respect to the

norm inherited from X . A subspace Y of a Banach space X is a Banach space with

respect to the norm inherited from X if and only if Y is closed in X .

To prove the ‘if’ part, suppose that (yn)n>1 is a Cauchy sequence in the closed sub-

space Y of a Banach space X . Then it has a limit in X , by the completeness of X , and

this limit belongs to Y , by the closedness of Y . The proof of the ‘only if’ part is equally

simple and does not require X to be complete. If (yn)n>1 is a sequence in the complete

subspace Y such that yn → x in X , then (yn)n>1 is a Cauchy sequence in X , hence also

in Y , and therefore it has a limit y in Y , by the completeness of Y . Since (yn)n>1 also

converges to y in X , it follows that y = x and therefore x ∈ Y .

Quotients If Y is a closed subspace of a Banach space X , the quotient space X/Y can

be endowed with a norm by

‖[x]‖ := inf
y∈Y

‖x− y‖,

where for brevity we write [x] := x+Y for the equivalence class of x modulo Y . Let us

check that this indeed defines a norm. If ‖[x]‖ = 0, then there is a sequence (yn)n>1 in

Y such that ‖x− yn‖<
1
n

for all n > 1. Then

‖yn − ym‖6 ‖yn − x‖+‖x− ym‖<
1

n
+

1

m
,

www.cambridge.org/9781009542463
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-54246-3 — Functional Analysis
Jan van Neerven
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Banach Spaces

so (yn)n>1 is a Cauchy sequence in X . It has a limit y ∈ X since X is complete, and we

have y ∈Y since Y is closed. Then ‖x−y‖= limn→∞ ‖x−yn‖= 0, so x = y. This implies

that [x] = [y] = [0], the zero element of X/Y . The identity ‖c[x]‖ = |c|‖[x]‖ is trivially

verified, and so is the triangle inequality.

To see that the normed space X/Y is complete we use the completeness of X and

Proposition 1.3. If ∑n>1 ‖[xn]‖< ∞ and the yn ∈Y are such that ‖xn−yn‖6 ‖[xn]‖+
1
n2 ,

the proposition implies that ∑n>1(yn −xn) converges in X , say to x. Then, for all N > 1,

∥
∥
∥[x]−

N

∑
n=1

[xn]
∥
∥
∥=

∥
∥
∥

[

x−
N

∑
n=1

xn

]∥
∥
∥6

∥
∥
∥x−

N

∑
n=1

xn +
N

∑
n=1

yn

∥
∥
∥=

∥
∥
∥x−

( N

∑
n=1

xn − yn

)∥
∥
∥.

As N → ∞, the right-hand side tends to 0 and therefore limN→∞ ∑
N
n=1[xn] = [x] in X/Y .

Direct Sums A product norm on a finite cartesian product X = X1×·· ·×XN of normed

spaces is a norm ‖ · ‖ satisfying

‖(0, . . . ,0, xn
︸︷︷︸

n−th

,0, . . . ,0)
∥
∥= ‖xn‖6 ‖(x1, . . . ,xN)‖

for all x = (x1, . . . ,xN)∈ X and n = 1, . . . ,N. For instance, every norm | · | on KN assign-

ing norm one to the standard unit vectors induces a product norm on X by the formula

‖(x1, . . . ,xN)‖ :=
∣
∣(‖x1‖, . . . ,‖xN‖)

∣
∣. (1.1)

As a normed space endowed with a product norm, the cartesian product will be denoted

X = X1 ⊕·· ·⊕XN

and called a direct sum of X1, . . . ,XN . If every Xn is a Banach space, then the normed

space X is a Banach space. Indeed, from

‖x‖=
∥
∥
∥

N

∑
n=1

(0, . . . ,0,xn,0, . . . ,0)
∥
∥
∥6

N

∑
n=1

‖xn‖6 N‖x‖ (1.2)

we see that a sequence (x(k))k>1 in X is Cauchy if and only if all its coordinate sequences

(x
(k)
n )k>1 are Cauchy. If the spaces Xn are complete, these coordinate sequences have

limits xn in Xn, and these limits serve as the coordinates of an element x = (x1, . . . ,xN)

in X which is the limit of the sequence (x(k))k>1.

1.1.c First Examples

The purpose of this brief section is to present a first catalogue of Banach spaces. The

presentation is not self-contained; the examples will be revisited in more detail in the

next chapter, where the relevant terminology is introduced and proofs are given.
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1.1 Banach Spaces 7

Figure 1.1 The open unit balls of R2 with respect to the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞.

Example 1.6 (Euclidean spaces). On Kd we may consider the euclidean norm

‖a‖2 :=
( d

∑
j=1

|a j|
2
)1/2

,

and more generally the p-norms

‖a‖p :=
( d

∑
j=1

|a j|
p
)1/p

, 1 6 p < ∞,

as well as the supremum norm

‖a‖∞ := sup
16 j6d

|a j|.

It is not immediately obvious that the p-norms are indeed norms; the triangle inequal-

ity ‖a+ b‖p 6 ‖a‖p + ‖b‖p will be proved in the next chapter. It is an easy matter to

check that the above norms are all equivalent in the sense defined in Section 1.3. In

what follows the euclidean norm of an element x ∈ Kd is denoted by |x| instead of the

more cumbersome ‖x‖2.

Example 1.7 (Sequence spaces). Thinking of elements of Kd as finite sequences, the

preceding example may be generalised to infinite sequences as follows. For 1 6 p < ∞

the space `p is defined as the space of all scalar sequences a = (ak)k>1 satisfying

‖a‖p :=
(

∑
k>1

|ak|
p
)1/p

< ∞.

The mapping a 7→ ‖a‖p is a norm which turns `p into a Banach space. The space `∞ of

all bounded scalar sequences a = (ak)k>1 is a Banach space with respect to the norm

‖a‖∞ := sup
k>1

|ak|< ∞.

The space c0 consisting of all bounded scalar sequences a = (ak)k>1 satisfying

lim
k→∞

ak = 0

1

1

1

1

1

1
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8 Banach Spaces

Figure 1.2 The open ball B( f ;1) in C[0,1] consists of all functions in C[0,1] whose graph

lies inside the shaded area.

is a closed subspace of `∞. As such it is a Banach space in its own right.

Example 1.8 (Spaces of continuous functions). Let K be a compact topological space.

The space C(K) of all continuous functions f : K → K is a Banach space with respect

to the supremum norm

‖ f‖∞ := sup
x∈K

| f (x)|.

This norm captures the notion of uniform convergence: for functions in C(K) we have

limn→∞ ‖ fn − f‖∞ = 0 if and only if limn→∞ fn = f uniformly.

Example 1.9 (Spaces of integrable functions). Let (Ω,F,µ) be a measure space. For

1 6 p < ∞, the space Lp(Ω) consisting of all measurable functions f : Ω →K such that

‖ f‖p :=
(∫

Ω
| f |p dµ

)1/p

< ∞,

identifying functions that are equal µ-almost everywhere, is a Banach space with respect

to the norm ‖ · ‖p. The space L∞(Ω) consisting of all measurable and µ-essentially

bounded functions f : Ω→K, identifying functions that are equal µ-almost everywhere,

is a Banach space with respect to the norm given by the µ-essential supremum

‖ f‖∞ := µ-esssup
ω∈Ω

| f (ω)| := inf
{

r > 0 : | f |6 r µ-almost everywhere
}
.

Example 1.10 (Spaces of measures). Let (Ω,F ) be a measurable space. The space

0.5 1

1

2

3

4

5

f (x)

x

y
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1.2 Bounded Operators 9

M(Ω) consisting of all K-valued measures of bounded variation on (Ω,F ) is a Banach

space with respect to the variation norm

‖µ‖ := |µ|(Ω) := sup
A∈F

∑
A∈A

|µ(A)|,

where F denotes the set of all finite collections of pairwise disjoint sets in F .

Example 1.11 (Hilbert spaces). A Hilbert space is an inner product space (H,(·|·)) that

is complete with respect to the norm

‖h‖ := (h|h)1/2.

Examples include the spaces Kd with the euclidean norm, `2, and the spaces L2(Ω).

Further examples will be given in later chapters.

1.1.d Separability

Most Banach spaces of interest in Analysis are infinite-dimensional in the sense that

they do not have a finite spanning set. In this context the following definition is often

useful.

Definition 1.12 (Separability). A normed space is called separable if it contains a

countable set whose linear span is dense.

Proposition 1.13. A normed space X is separable if and only if X contains a countable

dense set.

Proof The ‘if’ part is trivial. To prove the ‘only if’ part, let (xn)n>1 have dense span

in X . Let Q be a countable dense set in K (for example, one could take Q =Q if K=R

and Q = Q+ iQ if K = C). Then the set of all Q-linear combinations of the xn, that is,

all linear combinations involving coefficients from Q, is dense in X .

Finite-dimensional spaces, the sequence spaces c0 and `p with 1 6 p < ∞, the spaces

C(K) with K compact metric, and Lp(D) with 1 6 p < ∞ and D ⊆ Rd open, are sepa-

rable. The separability of C(K) and Lp(D) follows from the results proved in the next

chapter.

1.2 Bounded Operators

Having introduced normed spaces and Banach spaces, we now introduce a class of linear

operators acting between them which interact with the norm in a meaningful way.
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10 Banach Spaces

1.2.a Definition and General Properties

Let X and Y be normed spaces.

Definition 1.14 (Bounded operators). A linear operator T : X → Y is bounded if there

exists a finite constant C > 0 such that

‖T x‖6C‖x‖, x ∈ X .

Here, and in the rest of this work, we write T x instead of the more cumbersome T (x).

A bounded operator is a linear operator that is bounded.

The infimum CT of all admissible constants C in Definition 1.14 is itself admissible.

Thus CT is the least admissible constant. We claim that it equals the number

‖T‖ := sup
‖x‖61

‖T x‖.

To see this, let C be an admissible constant in Definition 1.14, that is, we assume that

‖T x‖ 6 C‖x‖ for all x ∈ X . Then ‖T‖ = sup‖x‖61 ‖T x‖ 6 C. This being true for all

admissible constants C, it follows that ‖T‖ 6 CT . The opposite inequality CT 6 ‖T‖

follows by observing that for all x ∈ X we have

‖T x‖6 ‖T‖‖x‖,

which means that ‖T‖ an admissible constant. This inequality is trivial for x = 0, and

for x 6= 0 it follows from scalar homogeneity, the linearity of T and the definition of the

number ‖T‖:

‖T x‖=
∥
∥
∥

1

‖x‖
T x

∥
∥
∥‖x‖=

∥
∥
∥T

x

‖x‖

∥
∥
∥‖x‖6 ‖T‖‖x‖.

Proposition 1.15. For a linear operator T : X → Y the following assertions are equiv-

alent:

(1) T is bounded;

(2) T is continuous;

(3) T is continuous at some point x0 ∈ X.

Proof The implication (1)⇒(2) follows from

‖T x−T x′‖= ‖T (x− x′)‖6 ‖T‖‖x− x′‖

and the implication (2)⇒(3) is trivial. To prove the implication (3)⇒(1), suppose that

T is continuous at x0. Then there exists a δ > 0 such that ‖x0 − y‖< δ implies ‖T x0 −

Ty‖ < 1. Since every x ∈ X with ‖x‖ < δ is of the form x = x0 − y with ‖x0 − y‖ < δ

(take y = x0 − x) and T is linear, it follows that ‖x‖ < δ implies ‖T x‖ < 1. By scalar

homogeneity and the linearity of T we may scale both sides with a factor δ , and obtain
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