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1

Second Quantization

In this chapter we revisit the quantum mechanical description of one-particle systems and

many-particle systems. We highlight the di�erences between distinguishable and indistin-

guishable, or identical, particles and bring to the front the mathematical complications that

arise when dealing with identical particles. We then introduce the second quantization for-

malism and show how to overcome these complications. The main actors of the second

quantization formalism are the field operators, which can be used to represent states and

quantum observables in the Hilbert space of identical particles.

1.1 Quantum Mechanics of One Particle

In quantum mechanics the physical state of a particle is described in terms of a ket |Ψ⟩.
This ket belongs to a Hilbert space, which is nothing but a vector space endowed with

an inner product. The dimension of the Hilbert space is essentially fixed by our physical

intuition; it is us who decide which kets are relevant to the description of the particle. For

instance, if we want to describe how a laser works we can choose those energy eigenkets

that get populated and depopulated, and discard the rest. This selection of states leads to

the well-known description of a laser in terms of a three-level system, four-level system, etc.

A fundamental property following from the vector nature of the Hilbert space is that any

linear superposition of kets is another ket in the Hilbert space. In other words, we can make

a linear superposition of physical states and the result is another physical state. In quantum

mechanics, however, it is only the “direction” of the ket that matters, so |Ψ⟩ and C|Ψ⟩
represent the same physical state for all complex numbers C . This redundancy prompts us

to work with normalized kets. What do we mean by that? We said before that there is an

inner product in the Hilbert space. Let us denote by ⟨Φ|Ψ⟩ = ⟨Ψ|Φ⟩∗ the inner product

between two kets |Ψ⟩ and |Φ⟩ of the Hilbert space. Then every ket has a real positive inner

product with itself,

0 < ⟨Ψ|Ψ⟩ <∞.

A ket is said to be normalized if the inner product with itself is 1. Throughout this

book we always assume that a ket is normalized unless otherwise stated. Every ket can be

normalized by choosing the complex constant C = eiα/
√

⟨Ψ|Ψ⟩ with α an arbitrary real

number. Thus, the normalization fixes the ket of a physical state only modulo a phase factor.

As we see in Section 1.3, this freedom is the basis of a fundamental property about the nature
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2 1 Second Quantization

Figure 1.1 Histogram of the normalized number of clicks of the detector in xn = n∆. The

height of the bars corresponds to the probabilities |Ψn|2.

of elementary particles. The notion of inner product also allows us to define the dual space

as the vector space of linear operators ⟨Φ|, which deliver the complex number ⟨Φ|Ψ⟩ when
acting on the ket |Ψ⟩. The elements of the dual space are called bra, and we can think of

the inner product as the action of a bra on a ket. The formulation of quantum mechanics

in terms of bras and kets is due to Dirac [1, 2] and turns out to be extremely useful.

According to the basic principles of quantum mechanics [2],

• With every physical observable is associated a Hermitian operator whose eigenvalues

λ represent the outcome of an experimental measurement of the observable.

• If the particle is described by the ket |Ψ⟩, then the probability of measuring λ is given

by

P (λ) = |⟨λ|Ψ⟩|2,
where |λ⟩ is the eigenket of the operator with eigenvalue λ.

• The experimental measurement is so invasive that just after measurement the particle

collapses in the ket |λ⟩.
Let us discuss the implications of these principles with an example.

Discrete formulation Suppose that we want to measure the position of a particle living

in a one-dimensional world. We can construct a detector with the property that it clicks

whenever the particle is no further away than, say, ∆/2 from the position of the detector.

We distribute these detectors on a uniform grid xn = n∆, with n integers, so as to cover

the entire one-dimensional world. The experiment consists in preparing the particle in a

state |Ψ⟩ and in taking note of which detector clicks. After the click, we know for sure

that the particle is in the interval xn ±∆/2, where xn is the position of the detector that

clicked. Repeating the experiment N ≫ 1 times, counting the number of times that a given

detector clicks, and dividing the result by N , we obtain the probability that the particle is

in the interval xn ± ∆/2, see histogram in Fig. 1.1. Quantum mechanics tells us that this

probability is

P (n) = |⟨n|Ψ⟩|2,
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1.1 Quantum Mechanics of One Particle 3

where |n⟩ is the ket describing the particle in the interval xn ± ∆/2. The experimental

setup does not allow us to say where exactly the particle is within this interval. In fact, it

does not make sense to speak about the exact position of the particle since it cannot be

measured. From the experimental output we could even argue that the one-dimensional

world is discrete! What we want to say is that in our experiment the “exact position” of the

particle is a mere speculative concept, like the gender, color, or happiness of the particle.

These degrees of freedom may also exist, but if they cannot be measured then we should

not include them in the description of the physical world. As scientists we can only assign

a ket |n⟩ to the state of the particle just after measurement, and we can interpret this ket

as describing the particle in some discrete position. The probability of finding the particle

in |n′⟩ just after the nth detector has clicked is zero for all n′ ̸= n and unity for n′ = n,
and hence,

⟨n′|n⟩ = δn′n. (1.1)

The kets |n⟩ are orthonormal and it is easy to show that they form a basis of our Hilbert

space. Suppose by absurdum that there exists another ket |χ⟩ orthogonal to all the |n⟩.
If the particle is described by this ket then the probability that the nth detector clicks is

|⟨n|χ⟩|2 = 0 for all n. This cannot be the case unless the particle is somewhere outside the

one-dimensional world – that is, in a state not included in our original description.

Let us continue to elaborate on the example of the particle in a one-dimensional world.

We said before, that the kets |n⟩ form a basis. Therefore, any ket |Ψ⟩ can be expanded as

|Ψ⟩ =
∑

n

Ψn|n⟩. (1.2)

Since the basis is orthonormal, the coe�cient Ψn is simply

Ψn = ⟨n|Ψ⟩, (1.3)

and its square modulus is exactly the probability P (n):

|Ψn|2 =

(
probability of finding the particle in

volume element ∆ around xn

)

.

It is important to appreciate the advantage of working with normalized kets. Since ⟨Ψ|Ψ⟩ =
1, then ∑

n

|Ψn|2 = 1, (1.4)

according to which the probability of finding the particle anywhere is unity. The interpreta-

tion of the |Ψn|2 as probabilities would not be possible if |Ψ⟩ and |n⟩ were not normalized.

Given an orthonormal basis, the inner product of a normalized ket |Ψ⟩ with a basis
ket gives the probability amplitude of having the particle in that ket.

Inserting (1.3) back into (1.2), we find the interesting relation

|Ψ⟩ =
∑

n

⟨n|Ψ⟩ |n⟩ =
∑

n

|n⟩⟨n|Ψ⟩.
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4 1 Second Quantization

This relation is interesting because it is true for all |Ψ⟩ and hence
∑

n

|n⟩⟨n| = 1̂, (1.5)

with 1̂ the identity operator. Equation (1.5) is known as the completeness relation and

expresses the fact that the set {|n⟩} is an orthonormal basis. Vice versa, any orthonormal

basis satisfies the completeness relation.

Continuum formulation We now assume that we can construct more and more precise

detectors and hence reduce the range ∆. Then we can also refine the description of our

particle by putting the detectors closer and closer. In the limit ∆→ 0, the probability |Ψn|2
approaches zero and it makes more sense to reason in terms of the probability density

|Ψn|2/∆ of finding the particle in xn. Let us rewrite (1.2) as

|Ψ⟩ = ∆
∑

n

Ψn√
∆

|n⟩√
∆
. (1.6)

We now define the continuous function Ψ(xn) and the continuous ket |xn⟩ as

Ψ(xn) ≡ lim
∆→0

Ψn√
∆
, |xn⟩ = lim

∆→0

|n⟩√
∆
.

In this definition the limiting function Ψ(xn) is well defined, while the limiting ket |xn⟩
makes mathematical sense only under an integral sign since the norm ⟨xn|xn⟩ = ∞.

However, we can still give to |xn⟩ a precise physical meaning since in quantum mechanics

only the “direction” of a ket matters.1 With these definitions (1.6) can be seen as the Riemann

sum of Ψ(xn)|xn⟩. In the limit ∆ → 0 the sum becomes an integral over x, and we can

write

|Ψ⟩ =
∫

dx Ψ(x)|x⟩.

The function Ψ(x) is usually called the wavefunction or the probability amplitude, and its

square modulus |Ψ(x)|2 is the probability density of finding the particle in x, or equivalently

|Ψ(x)|2 dx =

(
probability of finding the particle

in volume element dx around x

)

.

In the continuum formulation the orthonormality relation (1.1) becomes

⟨xn′ |xn⟩ = lim
∆→0

δn′n

∆
= δ(xn′ − xn),

where δ(x) is the Dirac δ-function, see Appendix A. Similarly, the completeness relation

becomes ∫

dx |x⟩⟨x| = 1̂.

1The formulation of quantum mechanics using nonnormalizable states requires the extension of Hilbert spaces

to rigged Hilbert spaces. Readers interested in the mathematical foundations of this extension can consult, for

example, Ref. [3]. Here we simply note that in a rigged Hilbert space everything works as in the more familiar
Hilbert space. We simply have to keep in mind that every divergent quantity comes from some continuous limit

and that in all physical quantities the divergency is canceled by an infinitesimally small quantity.
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1.1 Quantum Mechanics of One Particle 5

The entire discussion can easily be generalized to particles with spin in three (or any

other) dimension. Let us denote by x = (rσ) the collective index for the position r and the

spin projection (say along the z axis) σ of the particle. If in every point of space we put a

spin-polarized detector which clicks only if the particle has spin σ then |x⟩ is the state of

the particle just after the spin-polarized detector in r has clicked. The position–spin kets

|x⟩ are orthonormal

⟨x′|x⟩ = δσ′σδ(r
′ − r) ≡ δ(x′ − x), (1.7)

and form a basis. Hence they satisfy the completeness relation, which in this case reads

∫

dx |x⟩⟨x| = 1̂ (1.8)

Here and in the remainder of the book we use the symbol
∫

dx ≡
∑

σ

∫

dr

to signify a sum over spin and an integral over space. The expansion of a ket in this

continuous Hilbert space follows directly from the completeness relation

|Ψ⟩ = 1̂|Ψ⟩ =
∫

dx |x⟩⟨x|Ψ⟩,

and the square modulus of the wavefunction Ψ(x) ≡ ⟨x|Ψ⟩ is the probability density of

finding the particle in x = (rσ):

|Ψ(x)|2 dr =

(
probability of finding the particle with spin σ

in volume element dr around r

)

.

Operators So far we have only discussed the possible states of the particle, and the

physical interpretation of the expansion coe�cients. To say something about the dynamics

of the particle, we must know the Hamiltonian operator ĥ. The knowledge of the Hamiltonian

in quantum mechanics is analogous to knowledge of the forces in Newtonian mechanics. In

Newtonian mechanics the dynamics of the particle is completely determined by the position

and velocity at a certain time and by the forces. In quantum mechanics the dynamics of the

wavefunction is completely determined by the wavefunction at a certain time and by ĥ. The
Hamiltonian operator ĥ ≡ h(r̂, p̂, Ŝ) does, in general, depend on the position operator r̂,

the momentum operator p̂, and the spin operator Ŝ . An example is the Hamiltonian for a

particle of mass m, charge q, and gyromagnetic ratio g moving in an external scalar potential

φ, vector potential A, and whose spin is coupled to the magnetic field B = ∇×A:

ĥ =
1

2m

(

p̂− q

c
A(r̂)

)2

+ qφ(r̂)− gµBB(r̂) · Ŝ, (1.9)

with c the speed of light and µB the Bohr magneton.2 Unless otherwise stated in this

book we use atomic units, so ℏ = 1, c ∼ 137, electron charge e = −1, and electron mass

2Other relativistic corrections like the spin–orbit interaction can be incorporated without any conceptual com-

plication.
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6 1 Second Quantization

me = 1. Thus, in (1.9) the Bohr magneton µB = eℏ
2mec

∼ 3.649×10−3, and charge and mass

of the particles are measured in units of e and me, respectively. To distinguish operators

from scalar or matrix quantities we always put the symbol “ ˆ ” (read “hat”) on them. The

position–spin kets are eigenstates of the position operator and of the z-component of the

spin operator:

r̂|x⟩ = r|x⟩, Ŝz|x⟩ = σ|x⟩,
with σ = −S,−S +1, . . . , S − 1, S for spin S particles. The eigenstates of the momentum

operator are instead the momentum–spin kets |pσ⟩:

p̂|pσ⟩ = p|pσ⟩.

These kets are also eigenstates of Ŝz with eigenvalue σ. The momentum–spin kets form

an orthonormal basis like the position–spin kets. The inner product between |x⟩ = |rσ⟩
and |pσ′⟩ is proportional to δσσ′ times the plane wave eip·r. In this book we choose the

constant of proportionality to be unity, so that

⟨x|pσ′⟩ = δσσ′⟨r|p⟩ with ⟨r|p⟩ = eip·r (1.10)

This inner product fixes uniquely the form of the completeness relation for the kets |pσ⟩.
We have

⟨p′σ′|pσ⟩ = δσ′σ⟨p′|p⟩ = δσ′σ

∫

dr ⟨p′|r⟩⟨r|p⟩ = δσ′σ

∫

dr ei(p−p
′)·r

= (2π)3δσ′σδ(p
′ − p),

and therefore
∑

σ

∫
dp

(2π)3
|pσ⟩⟨pσ| = 1̂ (1.11)

as can easily be verified by acting with (1.11) on the ket |p′σ′⟩ or on the bra ⟨p′σ′|.
Before moving to the quantum mechanical description of many particles, let us briefly

recall how to calculate the matrix elements of the Hamiltonian ĥ in the position–spin basis.

If |Ψ⟩ is the ket of the particle, then

⟨x|p̂|Ψ⟩ = −i∇⟨x|Ψ⟩ ⇒ ⟨Ψ|p̂|x⟩ = i⟨Ψ|x⟩←−∇,

where the arrow over the gradient specifies that ∇ acts on the quantity to its left. It follows

from these identities that

⟨x|p̂|x′⟩ = −iδσσ′∇δ(r− r′) = iδσσ′δ(r− r′)
←−
∇

′, (1.12)

where ∇
′ means that the gradient acts on the primed variable. Therefore, the matrix

element ⟨x|ĥ|x′⟩ with ĥ = h(r̂, p̂, Ŝ) can be written as

⟨x|ĥ|x′⟩ = hσσ′(r,−i∇,S)δ(r− r′) = δ(r− r′)hσσ′(r′, i
←−
∇

′,S) (1.13)
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1.2 Quantum Mechanics of Many Particles 7

Figure 1.2 Histogram of the normalized number of simultaneous clicks of the electron and

positron detectors in xn = n∆ and xm = m∆, respectively. The height of the paral-

lelepipeds corresponds to the probabilities |Ψnm|2.

where S is the matrix of the spin operator with elements ⟨σ|Ŝ|σ′⟩ = Sσσ′ . For example,

for the one-particle Hamiltonian in (1.9) we have

hσσ′(r,−i∇,S) =
δσσ′

2m

(

−i∇− q

c
A(r)

)2

+ δσσ′qφ(r)− gµBB(r) · Sσσ′ .

We use (1.13) over and over in the following chapters to recognize the matrix structure of

several equations.

1.2 Quantum Mechanics of Many Particles

We want to generalize the concepts of the previous section to many particles. Let us first

discuss the case of distinguishable particles. Particles are called distinguishable if one or

more of their properties, such as mass, charge, spin, etc., are di�erent. Let us consider, for

instance, an electron and a positron in one dimension. These particles are distinguishable

since the charge of the positron is opposite to the charge of the electron.

Discrete formulation for two particles To measure the position of the electron and

the position of the positron at a certain time, we put an electron detector and a positron

detector at every point xn = n∆ of the real axis and perform a coincidence experiment.

This means that we take note of the position of the electron detector and of the positron

detector only if they click at the same time. The result of the experiment is the pair of

points (xn, xm), where xn refers to the electron and xm refers to the positron. Performing

the experiment N ≫ 1 times, counting the number of times that the pair (xn, xm) is

measured and dividing the result by N , we obtain the probability that the electron is in xn

and the positron in xm, see the histogram in Fig. 1.2. According to quantum mechanics,

the electron–positron pair collapses in the ket |n⟩|m⟩ just after measurement. This ket
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8 1 Second Quantization

describes an electron in the interval xn ± ∆/2 and a positron in the interval xm ± ∆/2.
Therefore, the probability of finding the electron–positron pair in |n′⟩|m′⟩ is zero unless

n′ = n and m′ = m; that is,

( ⟨n′|⟨m′| ) ( |n⟩|m⟩ ) = δn′nδm′m.

The kets |n⟩|m⟩ are orthonormal and form a basis since if there was a ket |χ⟩ orthogonal
to all of them then the electron–positron pair described by |χ⟩ would not be on the real

axis. The orthonormality of the basis is expressed by the completeness relation

∑

nm

( |n⟩|m⟩ ) ( ⟨n|⟨m| ) = 1̂.

This relation can be used to expand any ket as

|Ψ⟩ = 1̂|Ψ⟩ =
∑

nm

( |n⟩|m⟩ ) ( ⟨n|⟨m| ) |Ψ⟩,

and if |Ψ⟩ is normalized then the square modulus of the coe�cients Ψnm ≡ ( ⟨n|⟨m| ) |Ψ⟩
is the probability represented in the histogram.

Continuum formulation for two particles As in the previous section, we could refine

the experiment by putting the detectors closer and closer. We could also rethink the entire

experiment in three (or any other) dimensions and use spin-polarized detectors. We then

arrive at the position–spin kets |x1⟩|x2⟩ for the electron–positron pair with inner product

( ⟨x′
1|⟨x′

2| ) ( |x1⟩|x2⟩ ) = δ(x′
1 − x1)δ(x

′
2 − x2),

from which we deduce the completeness relation
∫

dx1dx2 ( |x1⟩|x2⟩ ) ( ⟨x1|⟨x2| ) = 1̂.

The expansion of a generic ket is

|Ψ⟩ =
∫

dx1dx2 ( |x1⟩|x2⟩ ) ( ⟨x1|⟨x2| ) |Ψ⟩,

and if |Ψ⟩ is normalized then the square modulus of the wavefunction Ψ(x1,x2) ≡
( ⟨x1|⟨x2| ) |Ψ⟩ yields the probability density of finding the electron in x1 = (r1σ1)
and the positron in x2 = (r2σ2):

|Ψ(x1,x2)|2 dr1dr2 =





probability of finding the electron with spin σ1

in volume element dr1 around r1 and the positron

with spin σ2 in volume element dr2 around r2



 .

Continuum formulation for N particles The generalization to N distinguishable par-

ticles is straightforward. The position–spin ket |x1⟩ . . . |xN ⟩ describes the physical state in

which the first particle is in x1, the second particle is in |x2⟩, etc. These kets form an

orthonormal basis with inner product

( ⟨x′
1| . . . ⟨x′

N | ) ( |x1⟩ . . . |xN ⟩ ) = δ(x′
1 − x1) . . . δ(x

′
N − xN ), (1.14)
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1.2 Quantum Mechanics of Many Particles 9

and therefore the completeness relation reads

∫

dx1 . . . dxN ( |x1⟩ . . . |xN ⟩ ) ( ⟨x1| . . . ⟨xN | ) = 1̂.

Operators Having discussed the Hilbert space for N distinguishable particles, we now

consider the operators acting on the N -particle kets. We start with an example and consider

again the electron–positron pair. Suppose that there is an electric field E(r) = −∇φ(r)
extending across all of space and that we are interested in measuring the total potential

energy. This is an observable quantity and, hence, associated with it there exists an operator

Ĥpot. By definition the eigenstates of this operator are the position–spin kets |x1⟩|x2⟩ and
the corresponding eigenvalues are −φ(r1)+φ(r2), independent of the spin of the particles

(in atomic units the charge of the electron is q = −1 and hence the charge of the positron

is q = +1). The operator Ĥpot is then the sum of the electrostatic potential operator acting

on the first particle and doing nothing to the second particle and the electrostatic potential

operator acting on the second particle and doing nothing to the first particle:

Ĥpot = −φ(r̂)⊗ 1̂ + 1̂⊗ φ(r̂). (1.15)

The symbol ⊗ denotes the tensor product of operators acting on di�erent particles:

Ĥpot|x1⟩|x2⟩ = −φ(r̂)|x1⟩1̂|x2⟩+ 1̂|x1⟩φ(r̂)|x2⟩ =
[
− φ(r1) + φ(r2)

]
|x1⟩|x2⟩.

The generalization of the potential energy operator to N particles of charge q1, . . . , qN is

rather voluminous

Ĥpot = q1φ(r̂)⊗1̂⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−1 times

+q21̂⊗φ(r̂)⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−2 times

+ . . .+qN 1̂⊗ 1̂⊗ . . .
︸ ︷︷ ︸

N−1 times

⊗φ(r̂), (1.16)

and it is typically shortened to

Ĥpot =

N∑

j=1

qjφ(r̂j),

where r̂j is the position operator acting on the jth particle and doing nothing to the other

particles. Similarly, the noninteracting part of the Hamiltonian of N particles is typically

written as

Ĥ0 =
N∑

j=1

ĥj =
N∑

j=1

h(r̂j , p̂j , Ŝj), (1.17)

while the interaction part is written as

Ĥint =
1

2

N∑

i ̸=j

v(r̂i, r̂j), (1.18)

with v(r1, r2) the interparticle interaction. We observe that these operators depend explicitly

on the number of particles and are therefore di�cult to manipulate in problems where the

www.cambridge.org/9781009536783
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-53678-3 — Nonequilibrium Many-Body Theory of Quantum Systems
Gianluca Stefanucci , Robert van Leeuwen
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 1 Second Quantization

number of particles can fluctuate, such as in systems at finite temperature. As we see

later in this chapter, another disadvantage is that the evaluation of their action on kets

describing identical particles is very lengthy. Fortunately, an incredible simplification occurs

for identical particles and the expressions for operators and kets become much lighter and

easier to manipulate. To appreciate this simplification, however, we first have to understand

how the quantum-mechanical formulation changes when the particles are identical.

1.3 Quantum Mechanics of Many Identical Particles

Two particles are called identical particles or indistinguishable particles if they have the

same internal properties (i.e., the same mass, charge, spin etc.). For example, two electrons

are two identical particles. To understand the qualitative di�erence between distinguishable

and identical particles, let us perform the coincidence experiment of the previous section

for two electrons both with spin projection 1/2 and again in one dimension.

Discrete formulation for two particles At every point xn = n∆ we put a spin-

polarized electron detector and since the particles are identical we need only one kind of

detector. If the detectors in xn and xm click at the same time, then we can be sure that

just after this time there is one electron around xn and another electron around xm. Let

us denote by |nm⟩ with n ≥ m the ket describing the physical state in which the two

electrons collapse after measurement. For mathematical convenience we also define the

ket |nm⟩ with n ≤ m as the ket describing the same physical state as |mn⟩. Notice the

di�erent notation with respect to the previous section, where we have used the ket |n⟩|m⟩
to describe the first particle around xn and the second particle around xm. In the case of

the electron–positron pair we could make the positron-click louder than the electron-click

and hence distinguish the state |n⟩|m⟩ from the state |m⟩|n⟩. However, in this case we only

have electron detectors and it is impossible to distinguish which electron has made a given

detector click.

In Section 1.1 we observed that the normalized ket of a physical state is uniquely defined

up to a phase factor. For our mathematical description to make sense, we then must impose

that

|nm⟩ = eiα|mn⟩ for all n, m.

Using the above relation twice, we find that e2iα = 1, or equivalently eiα = ±1. Conse-

quently, the ket

|nm⟩ = ±|mn⟩ (1.19)

is either symmetric or antisymmetric under the interchange of the electron positions. This is

a fundamental property of nature: All particles can be grouped in two main classes. Particles

described by a symmetric ket are called bosons, while those described by an antisymmetric

ket are called fermions. The electrons of our example are fermions. Here and in the rest of

the book the upper sign always refers to bosons and the lower sign to fermions. In the case

of fermions (1.19) implies |nn⟩ = −|nn⟩ and hence |nn⟩ must be the null ket |∅⟩ – that is,

it is not possible to create two fermions in the same position and with the same spin. This

peculiarity of fermions is known as the Pauli exclusion principle.
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