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1 Introduction
Since antiquity, definitions have played a crucial role in the organization of
our rational inquiries. Many of Plato’s dialogues, to mention a familiar para-
digm, can be seen as excruciating quests for definitions. The more definite the
language and subject matter of our inquiries are, the more rigorous the treat-
ment of definitions will be. Mathematics is thus a privileged arena. Given the
exactness that mathematical contexts require, the study of definitions reached
a mature stage once formal tools became sophisticated enough. Hence, most
of the following discussion is indebted to the advancements that have occurred
since the mid nineteenth century in mathematics, logic, and philosophy. The
reliance on formal tools should not be overestimated though, for many theoret-
ical features of definitions bear relevance to mathematical practice even before
and beyond formalization.

As Euclid’s Elements and Aristotle’s Posterior Analytics emphasized, defi-
nitions are essential to any systematic inquiry. They are central to any project
of conceptual analysis, especially to foundational projects. If these are seen
as aiming at the attainment and organization of knowledge, definitions take
on a genuine epistemological function. This Element focuses on the ways in
which definitions may constitute, provide, or otherwise lead to mathematical
knowledge.

What follows is thought of as an initial guide to a vast debate, which has
nevertheless rarely been given a self-standing treatment (notable exceptions
are Robinson 1950; Suppes 1957, chapter 8; Dubislav 1981; Belnap 1993;
Antonelli 1998; Gupta and Mackereth 2023). We first rehearse the role of defi-
nitions in foundational projects (Section 2). We then discuss three major kinds
of definitions: explicit definitions (Section 3), implicit definitions (Section 4),
and implicit definitions of primitive terms (Section 5), the latter being divided
into axiomatic (Section 5.1) and abstractive (Section 5.2). After pausing on the
notions of elucidation and explication (Section 6), we eventually survey (Sec-
tion 7) a variety of epistemological issues concerning definitions. We’ll look
for a balance among historical context, formal tools, and philosophical investi-
gations, assuming some background but with the inexperienced reader in mind.
Most mathematical examples will be confined, for analogous reasons, to geom-
etry, arithmetic, and analysis. A consistent part of our discussion will concern
authors who pioneered the foundations of mathematics (prominently Dedekind,
Frege, Hilbert, Peano, Russell, and Carnap), and proponents of major contem-
porary views. Logicist and structuralist views, and a comparison between the
two, will be given special attention, due to their role in foundational debates and
their reliance on two major sorts of definitions for mathematical primitives.
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2 The Philosophy of Mathematics

2 Definitions and Foundations
2.1 Foundations

A vivid outline of a foundational project for mathematics is offered by Quine
(1969), 69–70:

Studies in the foundations of mathematics divide symmetrically into two
sorts, conceptual and doctrinal. The conceptual studies are concerned with
meaning, the doctrinal with truth. The conceptual studies are concerned with
clarifying concepts by defining them, some in terms of others. The doctrinal
studies are concerned with establishing laws by proving them, some on the
basis of others. Ideally the more obscure concepts would be defined in terms
of the clearer ones so as to maximize clarity, and the less obvious laws would
be proved from the more obvious ones so as to maximize certainty. Ideally
the definitions would generate all the concepts from clear and distinct ideas,
and the proofs would generate all the theorems from self-evident truths.

Deductive proofs transfer (truth, justification, and) certainty from basic truths to
theorems, while definitions transfer (meaning and) clarity from basic to deriv-
ative concepts. This marks a distinctively epistemological enterprise, echoing
broader projects in the foundation of knowledge – Descartes’ on the ration-
alist side (see e.g. the Discourse on Method, Descartes 1637), or Hume’s on
the empiricist side (see e.g. Hume 1739–40). More generally, it shares ele-
ments with a traditional model for the systematization of a deductive science
(de Jong and Betti 2010), starting from Aristotle’s Posterior Analytics. But
what exactly is an epistemic foundation meant to provide?

On a strong reading, foundations deliver knowledge in the subject matter of
a target domain D that was previously precluded. A notable drawback is that
before foundations no one could genuinely be credited with knowledge of D.
If we follow a (debatable, but still traditional) tripartite definition of (propo-
sitional) knowledge as justified true belief, then since foundations secure true
beliefs, of which some, at least, were antecedently possessed, such beliefs can
fail to count as knowledge only because they were not justified either. Only a
foundation establishes that certain p’s in D are true, and provides reasons to
justifiedly believe in any (true) p in D. Such strong reading may have been
underlying projects like Descartes’, where hyperbolic doubt challenges both
truth and justification for all beliefs in order to attain those we cannot possibly
doubt; in our present case, the implication that mathematical beliefs could not
justifiedly be held true until the nineteenth century is obviously unpalatable.

On a more indulgent reading, foundations have an architectural purpose:
their aim is not (just) to question whether target statements are true, or whether
we have any good reasons to believe that they are, but to establish conclusively
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Definitions and Mathematical Knowledge 3

why they are true, to determine the ultimate grounds their truth depends on.
This approach often looks back at Euclid’s Elements as a paradigm. Descartes
himself (Discourse, II, 19) was moved by similar thoughts: “Those long chains
of utterly simple and easy reasonings that geometers commonly use to arrive
at their most difficult demonstrations had given me occasion to imagine that
all the things that can fall within human knowledge follow from one another in
the same way [ … ].”

At the beginning of the modern debate on the foundation of mathematics,
Frege (1884) (along with Bolzano, Dedekind, and others, with due differences)
endorsed similar views:

The aim of proof is, in fact, not merely to place the truth of a proposi-
tion beyond all doubt, but also to afford us insight into the dependence of
truths upon one another. After we have convinced ourselves that a boulder
is immovable, by trying unsuccessfully to move it, there remains the further
question, what is it that supports it so securely? (§2)

Rather than leading from lack to possession of knowledge, then, foundations
may be concerned with different kinds of justification. They would replace a
weaker, defeasible, possibly even a posteriori and inductive justification based
on successful applications, with the incontrovertible justification provided by
an explanation of the deductive relations connecting basic principles and theo-
rems. This architectural approach can then be accompanied, or even motivated,
by purely mathematical concerns as to how a mathematical theory is to be best
systematized.

On the epistemological side, foundations require establishing how basic prin-
ciples are themselves justified, or otherwise warranted, in a noninferential way.
On pain of regress, as Aristotle made clear, inferential justifications must come
to an end. Definitions must come to an end too. Basic terms cannot be defined
from more elementary ones, and still their meaning must be available somehow.
Foundations seem bound to feature both unprovable principles and indefinable
primitives. Both issues are especially pressing in mathematics, whose truths and
objects, on most conceptions, are inaccessible empirically or extratheoretically.

Within a foundational project, definitions can provide, or sustain, different
varieties of epistemic achievements. Surely they afford an understanding of
the meaning of the linguistic items that are being defined, or the concepts they
express, required to master them competently. They can sustain propositional
knowledge (knowledge that something is the case) with respect to both the
statements which are used to lay down the definition itself, and the theorems
that can be derived thanks to its introduction. They may even lead to objectual
knowledge, namely knowledge of the objects (if any, and of any variety) of a
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4 The Philosophy of Mathematics

mathematical theory. If at least some of the basic concepts F of a mathemati-
cal theory M are concepts under which objects supposedly fall, by determining
when an object x is to fall under F a definition will show how to individuate
objects of kind F, and the truth of M will entail countenancing their existence.
In this respect, a foundation is also an ontological, and possibly metaphysi-
cal, enterprise. Its aim is to determine, according to a given theory, what kinds
of objects there are and what kinds of objects they are (what their nature, or
essence, is). It can also determine what kinds of objects there aren’t, if they can
be reduced to, or identified with, objects of other kinds. Accordingly, although
our main focus will be on epistemology, matters in both semantics and ontology
will also play a relevant role.

Foundationalism can come in many varieties (Shapiro 2004), some of which
emphasize the theoretical and scientific significance of systematizing, unifying,
and connecting mathematical theories over traditional epistemological con-
cerns with evidence, knowledge, and justification. Moreover, even granting that
foundations are possible at all, foundationalism does not exhaust the philoso-
phy of mathematics, nor, therefore, the epistemology of definitions. Various
issues concerning definitions arise when we look at phenomena like mathe-
matical explanation or understanding, when we consider why mathematicians
redefine already established notions, or when we discuss whether one definition
is more natural than another; these issues are partly independent of foundational
projects, may be influenced by cognitive, sociological, and pragmatic factors,
and are elicited by the study of past and current mathematical practice (see e.g.
Tappenden 2008; Frans, Coumans, and de Regt 2022; Coumans 2024). Some
of these will cursorily surface in what follows, although this more nuanced
investigation of definitions will be kept in the background while we attempt
to outline and systematize a debate which is closer to traditional foundational
concerns.

But what are definitions, and what guides their formulation? Definitions
are statements expressing, or establishing, a relation between (the meaning
of) some linguistic items and (the meaning of) other linguistic items. They
establish that the meaning of a hitherto undefined symbol or expression of a
given grammatical type, the definiendum, is to be determined on the basis of
the meaning of a combination of one or more previously known symbols or
expressions, the definiens. Relevant grammatical types in natural language are
singular terms, including proper names, and predicates, including relational
expressions. Within a formal system, relevant syntactic types are constants,
function symbols (including term-forming operators), and predicate and rela-
tional symbols. The way in which such a determination of meaning is effected
(e.g. whether there is some sort of semantic equivalence between definiens
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and definiendum, whether both have to be of the same syntactic or grammat-
ical type, and so on) varies, as we will see, according to the specific kind of
definition considered.

Formally, the effect of the definition is to assign the defined expression a
suitable syntactic and inferential behavior. Semantically, to a very first approx-
imation, it is to provide the definiendum with a set of one or more (individually
necessary and jointly sufficient) defining conditions determining its semantic
interpretation (usually, the individual they refer to for constants and singular
terms, the function they determine for functional symbols, or the set of indi-
viduals or n-tuples of such individuals they denote for predicate and relation
symbols). On some conceptions, definitions also target extralinguistic items
by individuating the essence, nature, or constitutive features of some object or
property.

Some definitions can be seen as arbitrary stipulations that a certain expres-
sion is to be given a certain meaning. In the most interesting cases, however,
definitions are guided by pretheoretical patterns of use of informal notions that
they aim at capturing (wholly or partially) and systematizing. This raises the
question of how to establish whether a definition is successful (and what it is,
in general, for a definition to be successful). Usually, this involves a process
of reflective equilibrium (Goodman 1954/1983) between evidence and theory:
we systematize patterns of use through defining conditions, then check whether
the definition thus obtained is too strict (leaves out cases we would like it to
cover) or too loose (it applies to cases we wouldn’t want it to apply to), and then
go back to adjusting the defining conditions so as to make the definition more
adequate and precise. The details and significance of this procedure depend, as
we will see, on different conceptions of conceptual analysis.

2.2 Names and Things
Traditionally, a distinction is drawn between nominal and real definitions, that
is, definitions of names (quid nominis) versus definitions of things (quid rei).
The distinction is examined in Aristotle’s remarks on definitions (Deslauriers
2007), especially in Posterior Analytics (CW, I), and has been later related to
definitions in Euclid’s Elements (e.g. by Saccheri; see Heath’s commentary to
Euclid 1926, I). To a first approximation, nominal definitions target linguistic
items, that is, they provide linguistic expressions with meaning (hence, the con-
cepts they express with content); real definitions target the objects themselves
and capture their essential properties.

On one reading of Aristotle, real definitions differ from nominal ones
because they reveal why an object is (what is the cause, or aitia, of their
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6 The Philosophy of Mathematics

existence) and give “a demonstration of the essence” (Posterior Analytics, II,
94a) of a thing. They provide a metaphysical explanation. On a weaker reading,
real definitions are nominal definitions together with the assumption that what
is being defined exists: so, while nominal definitions just answer the question
what a thing is (to esti) with no commitment to its existence, other definitions
also presuppose an answer to the question whether a thing is (ei esti) and claim
that it is (oti esti). As such, they are especially suited for primitive notions, the
existence of whose referents cannot be proved within the theory and must hence
be presupposed. Nominal definitions simpliciter pertain to derivative notions,
the existence of whose objects has to be proved from general principles com-
mon to all sciences (common axioms, koinà axiomata) and from the postulates
and primitive notions of the relevant theory:

Now the things peculiar to the science, the existence of which must be
assumed, are the things with reference to which the science investigates the
essential attributes, e.g. arithmetic with reference to units, and geometry with
reference to points and lines. With these things it is assumed that they exist
and that they are of such and such a nature. . . .But, with regard to their essen-
tial properties, what is assumed is only the meaning of each term employed:
thus arithmetic assumes the answer to the question what is (meant by) ‘odd’
or ‘even’, ‘a square’ or ‘a cube,’ and geometry to the question what is (meant
by) ‘the irrational’ or ‘deflection’ or (the so-called) ‘verging’ (to a point); but
that there are such things is proved by means of the common principles and of
what has already been demonstrated. (Posterior Analytics I, 10, 76b3–76b9)

For instance, geometers must assume that there are points, but they define ‘tri-
angle’ nominally, leaving to demonstrations or geometrical constructions the
task of proving that triangles exist. As regards primitives, or “immediates,”
Aristotle further writes:

Of some things there is something else that is their explanation, of others
there is not. Hence it is clear that in some cases what a thing is is immediate
and a principle; and here one must suppose, or make apparent in some other
way, both that they are and what they are (which the arithmetician does; for
he supposes both what the unit is and that it is); but in those cases which have
a middle term [in a syllogism] and for which something else is explanatory
of their substance, one can, as we said, make them clear through a demon-
stration, but not by demonstrating what they are. (Posterior Analytics II, 9,
93b22–93b28)

Definitions of immediates are counted (with common axioms and postulates)
among the archai, the first indemonstrable principles of a deductive science.
What distinguishes immediates from other notions is that an explanation of
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Definitions and Mathematical Knowledge 7

why they are – their aitia – is not “something else”: they cannot be explained
by reduction to simpler items. Here nominal definitions come to an end, and the
content of immediates must be made “apparent in some other way,” for they
provide the very subject matter of the theory itself, its genus (genos).

The distinction between nominal and real definitions has been preserved
and discussed in the history of philosophy (see e.g. Locke 1690, III, vi) and
has elicited varied responses. Within the analytic tradition, due to its inherent
skepticism toward traditional metaphysics, real definitions have been dis-
missed. To wit, in discussing Aristotle on definitions, Russell (1945, 223–225),
contends that the notion of essence, like that of substance, is “a hopelessly
muddle-headed notion . . . a metaphysical mistake, due to transference to the
world-structure of the structure of sentences composed of a subject and a
predicate.” Other earlier reactions were friendlier. Mill (1843, I, VIII, 7),
for instance, acknowledged that “definitions, though of names only, must be
grounded on knowledge of the corresponding things [ … ] How to define a name
[ … ] may involve considerations going deep into the nature of the things which
are denoted by the name. Such, for instance, are the inquiries which form the
subjects of the most important of Plato’s Dialogues.”

Aristotle’s concern for immediates as providing the genus of a theory is
indeed due to his reaction to Plato’s account of definitions. Many Platonic dia-
logues are driven by questions of the “What is X ?” form. These are best seen as
requests for real definitions of the essence of X (love, knowledge, etc.), rather
than nominal definitions of X-terms. In the Sophist (see also Phaedrus, 265d–
266b), Socrates applies the so-called method of collection and division: to find
a correct definition of X, the inquirer should first collect different examples
of what we take to be X, consider them as falling under some broader kind,
and then proceed, by a dichotomic process, by dividing the largest kind into
two, locating our target X into one smaller kind, to be then further divided, and
so on. The essence of the species (eidos) X is then individuated by giving its
genus and its differentia (diaphora), which distinguishes it from other species
under the same genus. This decompositional analysis of concepts distinguishes
proper definitions from lists of cases. When asked “What is knowledge?,” the
young mathematician Theaetetus (Theaetetus, 146c–d) initially offers a list of
familiar examples: geometry, cobblery, carpentry, and “the skills that belong
to other craftsmen.” Socrates is adamant that this is not what he is looking for.
He asks for what is common to all these examples and requires a general crite-
rion for establishing whether some yet unencountered item is or isn’t a case of
knowledge. In contemporary terminology, this requires a definition of a con-
cept X to provide a set of individually necessary and jointly sufficient conditions
for the application for X, and, if it is a concept of objects, to determine when
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8 The Philosophy of Mathematics

two objects falling under the concept are distinct (conditions of identity), and
whether an object falls under the concept or not (conditions of application).

Aristotle does not reject definitions of this kind, but doubts we can rely on
them only. One objection is that the process of division by genera assumes
what it wants to prove – that is, assumes the existence of the objects that we
subsume progressively into broader genera. On the contrary, many definitions
can take the form of conclusions of syllogistic reasonings: since definitions are
a “demonstration of essences,” their statement can occur as the conclusion of
arguments (Posterior Analytics, II.3–10). This other form of definition is for
Aristotle much more suited to a general method of a demonstrative science,
while “division by genera is a small part” of such a method.

Although mathematical definitions are most of the time treated as nomi-
nal, they are still often (implicitly or explicitly) treated as real definitions and
may be conceived as ways to capture the nature of mathematical objects or to
determine the conditions for their existence (see Section 7.4.2).

2.3 The Euclidean Paradigm
Both Plato’s and Aristotle’s views on definitions were plausibly influenced by
Greek geometry, and themselves have influenced the reception of its later pres-
entation in Euclid’s Elements. Since the latter have long been a paradigm of
foundational theories, recalling even a much simplified outline will help (for
more, see Euclid 1926, introduction; Mueller 1981).

Book I of the Elements (in Heidberg’s edition) contains twenty-three
definitions ( ), five postulates ( ), and five common notions
( ). A sample of the first seven definitions (with emphasis added
on the term being introduced) is:

E೭೮’ D೯ (೫೯)
D1 A point is that which has no part.
D2 A line is breadthless length.
D3 The extremities of a line are points.
D4 A straight line is a line which lies evenly with the points on itself.
D5 A surface is that which has length and breadth only.
D6 The extremities of a surface are lines.
D7 A plane surface is a surface which lies evenly with the straight lines

on itself.

In Aristotle’s terms, we find both immediates and nominal definitions of deriv-
ative notions. ‘Point,’ ‘line,’ and ‘surface’ are among the former. They identify
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the subject matter (genus) of the theory, whose existence – according to Aris-
totle – must be posited, and whose explanation does not depend on “something
else.” Other notions are derived from them. For instance, D7 defines ‘plane
surface’ through the already available notions of surface and straight line,
the latter being itself introduced in D4 in terms of line and point. Remain-
ing expressions – ‘part,’ ‘breadth,’ ‘extremities,’ ‘inclination,’ ‘meet,’ ‘lies
evenly,’ ‘containing’, and so on – may be seen as part of an antecedently shared
language (note that extremities could be taken as primitives and used to define
other notions in D3 and D6, although this would violate Aristotle’s concern
not to “explain the prior by the posterior”; Aristotle CW, Topics, I, 4, 141b.15
ff.). Following this taxonomy, statements introducing primitives (D1, D2, etc.)
would not properly count as definitions, but rather illustrations or elucidations
(Section 6.1) of notions whose basic grasp is antecedently and pretheoretically
guaranteed (for instance by spatial intuition). So much so that they are actu-
ally never used in proofs in the Elements, a feature that takes them apart from
other proper definitions (and raises both exegetical issues on the composition of
Euclid’s work – Russo 1998 – and conceptual questions as to their theoretical
role as purported definitions – see Section 3.3).

The five postulates are:

E೭೮’ P೫೯
P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight line.
P3 To describe a circle with any centre and distance.
P4 That all right angles are equal to one another.
P5 That, if a straight line falling on two straight lines make the interior

angles on the same side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are the angles less
than the two right angles.

Postulates are not proved from anything else, and are supposed to use only
primitive notions and notions already defined through them (e.g. ‘straight line’
is defined in D4 via D2 and D1). Differently from modern presentations of
mathematical axioms, some of Euclid’s postulates (e.g. P1–P3) are not properly
assertions (declarative descriptions of geometrical facts supposed to hold), but
rather prescriptions or instructions on how certain figures can be constructed
(through ruler and compass). Also, we now call ‘axioms’ the principles of a
theory, but ancient usage displays a subtle variety of uses for the term (Euclid
1926, Introduction, IX, §3).
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10 The Philosophy of Mathematics

Definitions and Postulates are supplemented with common notions:

E೭೮’ C N
C1 Things which are equal to the same thing are also equal to one

another.
C2 If equals be added to equals, the wholes are equal.
C3 If equals be subtracted from equals, the remainders are equal.
C4 Things which coincide with one another are equal to one another.
C5 The whole is greater than the part.

These are general principles concerning quantity and magnitude, and offer
the theoretical scaffolding for a derivation of geometrical theorems. Notice
that proofs in the Elements heavily rely on actually constructed diagrams
of geometrical figures. A proper separation between their propositional and
visual aspects may be hard to draw and diagrams may contribute to the
justification of theorems as ingredients of their derivation (Giaquinto 2007;
Manders 2008).

Several other definitions of great mathematical value are found in the later
books. Worth mentioning are at least those concerning ratios of magnitudes in
Book V, systematizing Eudoxus’ theory of proportions, which will underlie
later characterizations of real numbers; and those, in Books VII–IX, illus-
trating the notion of unit (“that by virtue of which each of the things that
exist is called one”) and defining number as “a multitude composed of units”
(also introducing other notions like multiple, even, odd, prime, etc.). Possibly
because arithmetic, on this conception, requires no proper construction proce-
dures (apart from the addition of one unit to other units), no proper arithmetical
postulates are provided, so no axiomatic treatment of arithmetic is advanced.
This was to change only in the nineteenth century.

This brief outline not only shows that Aristotle’s taxonomy of definitions
applies (being itself inspired by geometrical practice) to the definitions in the
Elements. It also shows – once significant idealizations or simplifications are
conceded – why the Elements have been the paradigm model of foundations,
where certain truths lead to theorems via proof, and clear notions lead to
derivative ones via definition. Whether such a paradigm is still adequate for
modern conceptions of mathematical knowledge is something we will touch
upon and that can variously be disputed (Paseau and Wrigley 2024). Finally,
it emphasizes the irreducible role of postulates – which must be noninferen-
tially justified – and primitives – whose meaning cannot be given in simpler
terms.
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