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Machine Learning in Quantum Sciences

Arti�cial intelligence is reshaping the world, including scienti�c research. It plays
an essential role in scienti�c discovery by enhancing and accelerating research across
multiple �elds. This book dives into the interplay between arti�cial intelligence and
the quantum sciences, the outcome of a collaborative e�ort from the world’s leading
experts. After presenting the key concepts and foundations of machine learning, a
sub�eld of arti�cial intelligence, its applications in quantum chemistry and physics
are presented in an accessible way, enabling readers to engage with emerging litera-
ture on machine learning in science. By examining its state-of-the-art applications,
readers will discover how machine learning is currently being applied in their own
�eld and appreciate its broader impact on science and technology.

This book is accessible to undergraduates and more advanced readers from
physics, chemistry, engineering, and computer science. Online resources include
coding exercises as Jupyter notebooks for self-study of some key topics introduced
in the book.
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Preface

We live in fascinating times where scientists are starting to incorporate arti�cial intel-
ligence (AI) algorithms for knowledge discovery. Advances in this booming �eld have
led to a rapid increase in the interest and con�dence of the scienti�c community in
these methods. This trend can be observed by tracking the percentage of machine
learning (ML)-based publications in physics, chemistry, and material science, shown
in Fig. 0.1. As the number of ML applications grows, keeping track of all advances
becomes challenging. Moreover, it is di�cult to �nd reliable intermediate-level
learning material that allows one to e�ciently bridge the gap between the rapidly
developing �eld of ML and scientists interested in incorporating ML tools into their
own research.

The idea of creating this book was born out of Summer School: Machine Learning
in QuantumPhysics and Chemistry that took place betweenAugust 23 and September
03, 2021, in Warsaw, Poland. As such, its aim is to give an educational and self-
contained overviewofmodern applications ofML in quantumsciences. The scienti�c
content of this work is inspired by the topics covered by the lecturers and invited
speakers of the school. We invite the reader to take a look at the school tutorials
in [2] and to reuse the �gures prepared for this book, which are available in [3].

The target audience of this book is quantum scientists who want to familiarize
themselves with ML methods. Therefore, we assume a basic knowledge of linear
algebra, probability theory, and quantum information theory. We also expect famil-
iarity with concepts such as Lagrange multipliers, Hilbert space, and Monte Carlo
methods. We also assume that the reader is familiar with quantum mechanics and
has a basic grasp of the current challenges in quantum sciences.

Our book is roughly divided into three parts. The �rst part is devoted to establish-
ing a solid foundation of basicML concepts needed for understanding its applications
in natural sciences. In the second part, we dive into four core application areas of
ML in quantum sciences. This covers the use of deep learning and kernel meth-
ods in supervised, unsupervised, and reinforcement learning algorithms for phase

Figure 0.1 The number of ML-based publications in physics, materials science, and
chemistry is growing exponentially. Adapted from [1] under the MIT License.

xv
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PREFACE

Figure 0.2 Interplay of AI and quantum sciences, in particular quantum computing,
many-body physics, and quantum chemistry. Within this book, we focus not only on
the in�uence of AI on quantum sciences but also cover the reverse impact of statistical
physics and quantum computing on ML.

classi�cation, representation of many-body quantum states, quantum feedback con-
trol, and quantum circuit optimization among other applications. In the third part,
we introduce and discuss more specialized topics such as di�erentiable program-
ming, generativemodels, statistical physics approaches toML, and quantummachine
learning. All in all, this book discusses the fruitful interplay of AI and quantum sci-
ences, presented schematically in Fig. 0.2.

We do not aim to provide an exhaustive list of ML applications in quantum sci-
ences. Such reviews already exist and nicely summarize the latest achievements
[4–6]. Instead, our objective is to provide the reader with enough knowledge, intu-
ition, and tricks of the trade to start implementingMLmethods of choice in their own
research. As such, we selected the ML applications presented in this work that, we
believe, are pedagogically appealing while keeping a broad overview of the �eld. To
this end, we focus on what a reader could do and not only on what has been done. To
ful�ll this ambition, we conclude each chapter with an outlook and open problems
that we recognize as important and promising.

Online resources accompanying this book include coding exercises as Jupyter
notebooks for self-study, and focus on key topics introduced in the book. These are
available for download at www.cambridge.org/dawidQML.
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Note on the text

Numbers and arrays

A matrix

A tensor

a vector

A random variable

a scalar

Physical constants and quantities

� 1∕kBT

� Kronecker delta

⟨x⟩p or E[x ∣ p] estimator of quantity x
with respect to distribution p

�̂ Pauli matrix

Ĥ quantum Hamiltonian

H Hilbert space

� spin variable

H classical Hamiltonian

kB Boltzmann constant

m magnetization

Z partition function

Machine learning quantities

b model biases

Ki or K ith class or number of classes
in a classi�cation problem

D dataset

n size of D, that is, the number of
training examples

� learning rate

� feature map

m dimensionality of data point x,
that is, the number of data fea-
tures

f̂ model with converged �

L loss (or cost/error) function

H Hessian matrix

d size of �, that is, number ofmodel
parameters

� model parameters

�
∗

converged �

� policy

�∗ optimal policy

ln L(n) regularization

& activation function

w orW vector or matrix of model
weights

a action

DKL Kullback–Leibler divergence

G return

r reward

s state
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Abbreviations

AD automatic di�erentiation

AE autoencoder

AI arti�cial intelligence

ANN arti�cial neural network

AR autoregressive

ARNN autoregressive neural network

BIC Bayesian information criterion

BO Bayesian optimization

CPU central processing unit

CE cross-entropy

CNN convolutional neural network

)P di�erentiable programming

DL deep learning

DNN deep neural network

DQN deep Q-network

ECM episodic and compositional mem-
ory

GAMP generalized approximate mes-
sage passing

GAN generative adversarial network

GNS generative neural sampler

GP Gaussian process

GPR Gaussian process regression

GPU graphics processing unit

IGT Ising gauge theory

KRR kernel ridge regression

KL Kullback–Leibler

L-BFGS limited-memory Broyden–
Fletcher–Goldfarb–Shanno
algorithm

LASSO least absolute shrinkage and
selection operator

LE local ensemble

MAE mean absolute error

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MDP Markov decision process

ML machine learning

MLE maximum likelihood estimation

MPS matrix product state

MSE mean-squared error

NF normalizing �ow

NIS neural importance sampling

NISQ noisy intermediate-scale quan-
tum

NMCMC neural Markov chain Monte
Carlo

NN neural network

NQS neural quantum state

ODE ordinary di�erential equation

PC principal component

PCA principal component analysis

PES potential energy surface

POVM positive operator-valued mea-
sure

PPT positive under partial transposition

PQC parametrized quantum circuit

PS projective simulation

QAOA quantum approximate optimiza-
tion algorithm
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LIST OF ABBREVIATIONS

QD quantum dot

QML quantum machine learning

RBM restricted Boltzmann machine

RKHS reproducing kernel Hilbert space

RL reinforcement learning

RNN recurrent neural network

RUE resampling uncertainty estimation

SGD stochastic gradient descent

SE state evolution

SVM support vector machine

t-SNE t-distributed stochastic neighbor
embedding

t-VMC time-dependent variational
Monte Carlo

TD temporal di�erence

TN tensor network

TNS tensor network state

VAE variational autoencoder

VQE variational quantum eigensolver
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