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1 Introduction

Making intelligent machines, that is, machines capable of learning and utilizing the
gathered knowledge in thinking and reasoning, is a long-lived dream of human civ-
ilization. The more we know about the human brain, intelligence, and psychology,
the more challenging it seems. However, despite the many obstacles and challenges
in creating arti�cial intelligence (AI), the joint e�ort of researchers working in the
natural, cognitive, mathematical, and computer sciences has produced impressive
machinery that is already revolutionizing our daily life, industry, and science.

1.1 How do computers learn?

The ultimate goal of AI is to endow machines with the ability to conceptualize and
create abstractions. Both of these features are mechanisms that underlie learning
representations of knowledge and reasoning based on experience in humans. Wehave
multiple ways of representing ideas. For example, we can encode a piece of music in
a digital format on a computer, in an analog format on a vinyl disk, or we can write it
down in a music score. Although the representations are entirely di�erent, the piece
of music is the same. Therefore, the properties of abstract ideas do not depend on the
data source.

Furthermore, conceptualization and abstraction bring the possibility of consider-
ing various levels of details within a particular representation or the ability to switch
from one level to another while preserving the relevant information [7–11]. Our brain
excels at extracting abstract ideas from di�erent representations of knowledge. In our
daily lives, we constantly process information from multiple sources that represent
the same concept in completely di�erent ways. For example, we can identify the con-
cept of a dog by seeing one, hearing or smelling it, reading the word “dog,” painting
a snout on someone’s face, or even casting shadows with our hands that resemble the
shade of a dog. This level of abstraction and conceptualization enables us to reason,
connecting high-level ideas. All the properties of our brain mentioned above form
what we call intelligence. Conferring these properties to a computer would result in
a general problem-solving machine.

Today, we are at a point in our technological advances at which the human brain
and computers have a disjoint set of tasks in which they naturally excel.1 Some
tasks are easy for computers but di�cult for humans. These are problems that can
be described by a list of formal, mathematical rules. Therefore, computers excel at
solving logic, algebra, geometry, and optimization problems, which we can tackle
with hard-coded solutions or knowledge-based AI. However, we would like to tackle
problems that are not easy to present in a formal mathematical way, such as face

1This observation was �rst made in the 1980s, and it is called Moravec’s paradox. As Moravec wrote
in 1988 [12], “It is comparatively easy to make computers exhibit adult level performance on intelligence
tests or playing checkers, and di�cult or impossible to give them the skills of a one-year-old when it comes
to perception and mobility” (p. 15).
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Figure 1.1 Schematic representation of the di�erence between traditional program-
ming, based on the algorithmic approach, and the experience-based/data-driven
approach, which is the backbone of the ML paradigm. The ML paradigm is the �rst
step toward learning abstractions by computers through the extraction of common fea-
tures from data.

recognition, or whose exact mathematical formulation is not yet known, such as
detecting new quantum phases.

A particularly exciting direction is the development of algorithms that are not
explicitly programmed. The main principle is to enable computers to learn from
experience (or data). The shift toward this data-driven paradigm led to the birth of
machine learning (ML), schematically depicted in Fig. 1.1. This �eld leverages fun-
damental concepts of applied statistics, emphasizing the use of computers to estimate
complicated functions and with a decreased emphasis on proving con�dence inter-
vals around them [13]. This trend has accelerated with the rise of deep learning (DL),
where enormous and heavily parametrized hierarchical models are used to deal with
complex patterns from real-world data and do this with unprecedented accuracy.
Interestingly, many DL architectures are designed to mimic some of the properties
of the human thinking process, such as understanding correlations in visual patterns
or recurrence in sound signals. We present a schematic representation of the relation-
ship between these three �elds (AI, ML, and DL) in Fig. 1.2.

To make a computer learn, we need three main ingredients:

1. A task to solve (Section 1.4).

2. Data that can be considered as an equivalent of experience. The latter
can be provided in the form of, for example, an interacting environ-
ment, and allows for solving the task (Section 1.5).

3. Amodel that learns how to solve the task (Section 2.4).

To check whether a computer successfully learns how to solve a task, we
need to de�ne a performance measure that can be as simple as the compar-
ison between the prediction of the model and the expected answer. In these
terms, the learning process can be described as the iterative minimization of
the model error or maximization of the model performance on the given task
and data.
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1.2 Historical view on learning machines

Figure 1.2 Sketch of the relation between AI, ML, and DL with examples from each
�eld, including support vectormachines (SVMs), principal component analysis (PCA),
neural networks (NNs), and convolutional neural networks (CNNs).

1.2 Historical view on learning machines

The foundations of the theory of learning were established already in the 1940s. Its
development has followed two parallel paths: a knowledge-based approach, which
dominated the AI research �eld for decades, and a data-based one, which is cur-
rently on the rise. Throughout the years, ML has gone under various names (such
as cybernetics or connectionism) and experienced a few cycles of intense popular-
ity,2 followed by criticism and disappointment, followed by funding cuts, followed by
renewed interest years or decades later [13]. To give the reader some insights into the
giants onwhose shoulderswe stand, we brie�y presentmilestones in the development
of ML following [13, 15–17]:

• 1943 – Walter Pitts and Warren McCulloch create a computer model inspired
by the neural networks (NNs) of the human brain called the threshold logic.
Their �eld of expertise is called cybernetics.

• 1949 – Donald Hebb hypothesizes how learning in biological systems works
and formulates Hebbian learning. For example, if certain neurons “�re
together, they wire together.”

• 1957 – Frank Rosenblatt introduces a Rosenblatt perceptron modeling a single
neuron. A perceptron is also called “an arti�cial neuron” and, after modi�-
cations in 1969 by Marvin Minsky and Seymour Papert, to this day, remains
widely used as a building block of arti�cial neural networks (ANNs).

• 1962 – David Hubel and TorstenWiesel present, for the �rst time, the response
properties of single biological neurons recorded with a microelectrode.

2Some argue that the “AIwinter” is upon us unless we rethinkAI or combine it with knowledge-based
approaches [14]. It is also important to remember that such hype cycles are frequent with emerging new
technologies.
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• 1969 – Marvin Minsky and Seymour Papert point out the computational limi-
tations and disadvantages of linear models, including a single arti�cial neuron,
contributing to the �rst “AI winter.”

• 1986 – David Rumelhart, Geo�rey Hinton, and Ronald Williams use back-
propagation to train an NN with one or two hidden layers, which, next to the
revival of Hebb’s ideas, causes renewed interest in the �eld that at this time
is called connectionism. In the same year, David Rummelhart et al. publish
a widely discussed two-volume book Parallel Distributed Processing, which col-
lected original contributions from the �eld, including backpropagation and
Boltzmann machines.

• Themid-1990s – SecondAIwinterwhose appearance is ascribed [13] to exceed-
ingly ambitious claims of the community, which led to the disappointment of
investors, and the simultaneous progress of kernel methods, which require less
computational resources.

Interestingly, we can see how closely the development of AI was intertwined with
neuroscience. This makes sense, as the human brain provides proof by example that
intelligent behavior is possible. A natural approach to AI would be to try to reverse
engineer the brain to reproduce its functionality. However, while the perceptron was
inspired by biological neurons and someMLmodels are loosely inspired by neurolog-
ical discoveries, there is nowadays a consensus that models should not be designed
to be realistic simulators of biological functions [13].3 Instead, scientists attempt to
solve the mysteries of the human brain using ML.

Since 2006, DL has been thriving again thanks to a breakthrough in the e�-
cient training of deep NNs [18] via backpropagation, followed by multiple analyses
con�rming the importance of its depth. At the same time, there has been a rapid
improvement in computational power in recent decades, which has allowed the
exploration of larger MLmodels. Here, the development of graphics processing units
(GPUs) [19, 20] has played a particularly important role: highly parallelizable algo-
rithms, such as NNs, which are based on matrix and vector operations, can pro�t
immensely from the parallel architecture of GPUs, enabling them to process large
amounts of data more e�ciently than central processing units (CPUs). Furthermore,
we have started to produce and store large amounts of easily accessible electronic
data throughout the world [21–23], enabling data-driven programming approaches.
Since then, progress in the �eld has enabled realizations of concepts known, so far,
only in science-�ction literature, such as self-driving cars or robotsmimicking human
emotions on their arti�cial faces (even if we are still far from human-like intelli-
gence [24]). DL has dominated the �eld of computer vision for years and has found
great success in time series analysis, with applications such as stock market and
weather forecasting [25]. Another fruitful direction is natural language processing,
where sequence-to-sequence models have achieved great feats, even combining text
with images [26, 27]. The DL-based algorithms obtained superhuman performance
in video games [28, 29] and complex board games, such as Go [30].

3Interestingly, we know that actual biological neurons compute very di�erent functions than the per-
ceptrons constituting our modern NNs, but greater realism has not yet led to any improvement in model
performance [13].
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1.3 Learning machines viewed by a statistical physics

Overall, the continuous progress in the �eld of ML is supported by the steady
increase in computational power and its easy applicability to real-world problems.
The increasing amount of data produced by our society and the monetary bene�t of
its processing have made the largest technological companies focus enormous eco-
nomic e�orts on the development of ML models. It is, hence, not a coincidence that
the most important research groups in the �eld are associated with such companies.
Importantly, one should understand the extent to which the trends of the �eld are dic-
tated by the thirst for scienti�c discovery or by the particular needs of one or another
technological giant. In summary, ML has become a day-to-day tool, acting in the
shades of multiple technological tools we use today [24], with the potential to solve
some of the most important problems of the modern world and thus contribute to
improving the quality of life of people around the world.

1.3 Learning machines viewed by a statistical physics

It is also worth noting that the above-sketched developments of AI, data science, cog-
nitive science, and neuroscience, related to ML and NN, were also intertwined with
the development of the statistical physics of spin glasses and NN. A wonderful retro-
spective of these developments can be found in the lecture of the late Naftali Tishby,
“Statistical physics andML: A 30-year perspective.” Therefore, here we present a sim-
ilar list of historical milestones as in Section 1.2 but focused on statistical physics
achievements:

• 1975 – Philipp W. Anderson and Samuel F. Edwards formulate the Edwards–
Anderson spin glass model with short-range random interactions between
Ising spins.

• 1975 – A little later, David Sherrington and Scott Kirkpatrick formulate the
Sherrington–Kirkpatrick spin-glass model with in�nite-range interactions, for
which the mean-�eld solution should be exact. They propose to solve it using
the replica trick, but this approximate solution turns out to be clearly incorrect
at low temperatures.

• 1979 – Giorgio Parisi proposes an ingenious replica symmetry-breaking solu-
tion of the Sherrington–Kirkpatrick model.

• 1982 – John J. Hop�eld publishes his seminal paper on attractor NNs, where,
by assuming the symmetry of interneuron coupling, he relates the model to
a disordered Ising model ofN spins, very much analogous to spin glasses. The
maximal storage capacity is found to be 0.14N.

• 1985 – Daniel Amit, Hannoch Gutfreund, and Haim Sompolinski formulate
the statistical physics of the Hop�eld model and relate limited storage capacity
to the spin-glass transition.

• 1987 – Marc Mezard, Giorgio Parisi, and Miguel Angel Virasoro publish the
book Spin Glass Theory and Beyond: An Introduction to the ReplicaMethod and
Its Applications. Interestingly, it is one of the �rst works bringing together sta-
tistical physics and NNs but also putting them in a more general context of
complex systems like optimization and protein folding.
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• 1988 – Elisabeth Gardner formulates the so-called Gardner’s program to ML,
where learning abilities are related to the relative volume in the space of
those NNs that realize learning tasks and teacher–student scenarios (see
Section 8.1.1).

• 1989 – Daniel Amit publishes the book Modeling Brain Function: The World
of Attractor NNs where he brings closer neurophysiology and arti�cial NNs by
introducing dynamical patterns whose temporal sequence encodes the infor-
mation.

• 1990 – Géza Györgyi shows that sharp phase transitions from bad to good gen-
eralization can occur in learning using Gardner’s program on the perceptron.

• 1995 – David Saad, Sara Solla, Michael Biehl, and Holm Schwarze adapt Gard-
ner’s idea to study the dynamics of gradient descent in perceptrons and simple
two-layer NNs called committee machines.

• Late 2010s – The statistical mechanics predictions for the perceptron and
the committee machine start being made mathematically rigorous by Nicolas
Macris, Jean Barbier, Lenka Zdeborová, and Florent Krzakala.

• 2010s–today – With the explosion of DLs, interest in the statistical mechan-
ics approach to learning is rekindled. Analyses are developed for increasingly
complex models beginning to bridge the gap from perceptrons to deep NNs.

• 2021 – Giorgio Parisi receives the Nobel Prize in Physics “for the discovery of
the interplay of disorder and �uctuations in physical systems from atomic to
planetary scales.”

• 2024 – John J. Hop�eld and Geo�rey Hinton receive the Nobel Prize in Physics
“for foundational discoveries and inventions that enable machine learning
with arti�cial neural networks.”

We discuss the intersection of statistical physics and ML in more detail in
Section 8.1.

1.4 Examples of tasks

As stated in Section 1.1, the �rst ingredient needed for a computer to learn is the
notion of a learning task. The archetypical ML task is the study of a response variable,
y(x), in�uenced by an explanatory variable x. In principle, there is no restriction on
whether y or x or both are continuous, discrete, or even categorical.4 Throughout the
book, we restrict both variables, possibly encoded accordingly, to be of quantitative
nature. That is, we can treat variables straightforwardly from a numerical perspective
and easily adjust them to �t our needs.

4When the inputs are, for example, words in a sentence as they are in the �eld of natural language
processing, we can still process them by representing words by a suitable encoding, which can be either
continuous or discrete.
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1.4 Examples of tasks

Regression. We start by considering regression tasks. In this setting, we typically
assume an immediate relationship between the two variables x and y, which is often
deterministic. More precisely, we seek to express the variabley, also known as (a.k.a.)
the output or target, in terms of the variable x, a.k.a. the input. In general, both
variables can be multidimensional, as indicated by our notation. The objective of
regression is to �nd the function f that yields the mapping y = f(x) for all possible
tuples of (x,y). Of course, from a practical point of view, we can neither optimize
over the set of all possible functions nor over the entire domain of x. Instead, we
resort to a �nite dataset for which we opt to �nd a model that maps every input x to
its corresponding target y. Usually, the model is prede�ned up to some parameters,5

which are tuned to �t the dataset. The most simple model assumes a linear relation-
ship between the input and the output. We give more details of this model archetype
in Section 2.4.1. From here, there is a multitude of ways to extend themodel by incor-
porating nonlinear dependencies on both the model parameters and the input x. We
�nd interesting regression problems in a large range of study �elds, such as sociol-
ogy (e.g., annual salary as a function of years of work experience), psychology (e.g.,
perceived happiness relative to wealth), �nance (e.g., housing market prices depend-
ing on socioeconomic factors), and, of course (quantum) physics and chemistry. We
cover some examples in this book, for instance, the prediction of potential energy sur-
faces (PESs) in quantum chemistry in Section 4.5, or the estimation of Hamiltonian’s
parameters given the measurement data in Section 7.3.

Classi�cation. Another large class of tasks is classi�cation. In this case, our goal is
to use an algorithm to assign discrete class labels to examples. In contrast to regres-
sion, we are optimizing a model to �nd a mapping from an input vector x to a target
y, which encodes a representation of the di�erent possible classes. The simplest
example of this kind of task is binary classi�cation, in which an algorithm has to dis-
tinguish between two classes, for example, true or false. When the task involves more
than two classes, we speak of multi-class classi�cation. A canonical example for such
a task is the classi�cation of the images of handwritten digits contained in the famous
MNIST [31] dataset (named after the Modi�ed National Institute of Standards and
Technology) over ten classes, one for each number from zero to nine. Other famous
ML classi�cation datasets are Iris [32], CIFAR-10 and 100 [33], and ImageNet [34].6

A popular example from physics is the classi�cation of di�erent classical and quan-
tum phases of matter, described in Chapter 3. Another set of examples is provided
by the classi�cation subroutines in the automation of (quantum) experiments high-
lighted in Section 7.3.

Both regression and classi�cation tasks require a training dataset consisting of
examples of inputs x together with their corresponding labels y. Nonetheless, there
are also tasks that do not require explicit labels. An example of such is density estima-
tion, where the aim is to infer the probability density function of the dataset. This is

5There are also nonparametric approaches, for example, see Sections 4.4.2 and 7.2.2.
6The Iris database contains 150 data points with four features of three species of iris. The CIFAR-10

dataset consists of 60 000 32×32 color images in 10 classes and was named after the Canadian Institute for
Advanced Research. Finally, the ImageNet is a gigantic project with over 10 million labeled images whose
most popular subset spans 1 000 object classes.
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directly related to the �eld of generative problems, where the goal is to generate new
data instances that resemble some given input data. The distinction between the two
�elds is that the latter does not require explicit knowledge or reconstruction of the
underlying data distribution to sample new instances. We present more details on
density estimation in Section 7.2.

In all the previous cases, we try to infer properties of a given prede�ned dataset.
However, there are other tasks that involve starting from scratch and building
a dataset on the �y, from which we can then learn. A paradigmatic example of such
a task is learning how to play a game. In this case, we start tabula rasa and progres-
sively build a dataset with the experience gathered as we play the game. From these
data (or during their retrieval), our goal is to learn a function that chooses the best
possible action or move according to the current state of the game. In this example,
we can periodically alternate between collecting experience and learning, or we can
do both at the same time.

This list of tasks is, of course, not exhaustive. Other examples that do not directly
fall into the previous categories include text translation, imputation ofmissing values,
anomaly detection, and data denoising, to name a few.

1.5 Types of learning

The second learning ingredient is data, whose accessibility also often determines the
type of learning we have to consider. It is clear, of course, that the notions of task, as
presented in Section 1.4, and data are intertwined: Certain tasks can only be solved
if su�cient data are available and, in turn, a richer dataset allows us to transfer from
one task to another with seemingly low e�ort. Although the term data is often used
for a variety of concepts across many �elds, there is a precise de�nition of it in the
ML community. We usually refer to data in terms of a dataset D, containing a �nite
amount of data instances often called data points xi , which may be presented as is,
that is, D = {xi} or may be accompanied by prede�ned labels or targets yi , that is,
D = {(xi ,yi)}. To shorten the notation, we also represent the input data points {xi}
by a matrix X, which can either be stacked row- or column-wise.

Although the notation is clear, there is much less convention and an even lesser
understanding of how the data should be represented. This is because, on the one
hand, the data can be arbitrarily preprocessed (e.g., the data mean is often subtracted
prior to any further analysis), which already provides some degree of freedom. On the
other hand, even choosing the right descriptors to characterize our object of interest
is challenging: Too few might not capture all relevant aspects of the object, whereas
too many can lead to spurious correlations that can interfere with the conclusions
that we want to draw from data. We refer to each element at each data point xi as
a feature. As stated in Section 1.1, a central problem in ML relates to the correct
representation of the data and its features. This is the core of the �eld of repre-
sentation learning, which we only touch upon, for example, by means of principal
component analysis (PCA) and autoencoders (AEs) in Chapter 3 and Section 7.2,
respectively.

Finally, we emphasize that data can, loosely speaking, be identi�ed with experi-
ence: Data can be produced as a result of a repeated interaction with an entity (such
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1.5 Types of learning

as an experiment or a simulation) that then leaves us with a certain amount of experi-
ence about its underlying mechanism. In some cases, this experience may be used to
further interact with such an entity and learn from it. To this end, we set up a model.
In summary, the type of data to which we have access e�ectively de�nes the types of
learning with which our model can be faced. These are usually divided into three:
supervised, unsupervised, and reinforcement learning (RL).

Supervised learning. Supervised learning can be seen as a generalized notion of
regression and classi�cation, introduced in Section 1.4, and describes ML algorithms
that learn from labeled data, that is, D = {(xi ,yi)}. There exist various approaches
to supervised learning, ranging from statistical methods to classical ML and DL, both
introduced in Section 2.4. The concept of supervised learning appears repeatedly in
this book and forms the basis of many chapters, including phase classi�cation (Chap-
ter 3), Gaussian processes (Chapter 4), aswell as the selected topics of DL for quantum
sciences (Chapter 8). Importantly, some of the latter are specially suited to deal with
experimental data, as, for instance, in the e�cient readout of quantum dots or the
identi�cation of Hamiltonian parameters describing quantum experimental setups.
In most of these examples (but there are notable exceptions), large amounts of data
are required for the training process. On top of the data, as stated above, supervised
learning requires correctly labeled data. This is usually considered one of its most
prominent downsides, as perfectly matching labels are not always accessible or have
to be added manually by humans.

Unsupervised learning. Supervised learning is not always the best option: the
scarcity of labeled data is an example in which a classical input–output design might
fail. Instead, we often have access to data where no prior information, for example,
in terms of labels, is given (i.e., D = {xi}). In this case, we can employ unsupervised
learning. Unsupervised learning can either be used for preliminary preprocessing
steps, such as dimensionality reduction, or for representation learning, such as in
clustering. In contrast, dimensionality can also be increased by adding features via
generative models. In this book, we discuss the application of unsupervised learning
for phase classi�cation in Chapter 3 and density estimation in Section 7.2. This exam-
ple is particularly interesting because it demonstrates how the choice of unsupervised
learning over supervised learning can aid in the automated discovery of new physics
when the interpretation of a process, for example, the nature of two di�erent phases
in a transition is unknown.

Reinforcement learning. In contrast to the two previous types of learning, in RL,
we usually do not have a dataset available at all. Instead, we have an environmentwith
whichwehave to interact to achieve a certain task. This interaction is augmentedwith
feedback, that is, some extra information on whether the action has been bene�cial
or harmful in achieving the task at hand. The collection of visited environment states,
actions taken, and rewards or penalizations received take the role of a dataset. Feed-
back is very important in RL because we do not have a clear-cut route in achieving
our task. In fact, initially, we typically do not even know the necessary ingredients
for achieving the task. Often, we only know that we achieved a speci�c goal but not
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why we did it. The �eld of RL is precisely concerned with tackling the issue of how.
To introduce it properly, we devote Chapter 6 to it.

Other types of learning. While supervised, unsupervised, and RL are the most
common learning schemes in the ML applications in quantum sciences, there are
ML approaches that go beyond this classi�cation. An interesting example is active
learning. This �eld includes selection strategies that allow for an iterative construc-
tion of a model’s training set in interaction with a human expert or environment.
The aim of active learning is to select the most informative examples and minimize
the cost of labeling [35, 36]. We only touch on this topic by means of BO7 in Sec-
tion 4.3 and local ensembles (LEs) in Section 3.5.3. Another example of learning is
semi-supervised learning in which a large amount of unlabeled data is explored to get
better feature representations and improve the models trained on the small number
of labeled data [37].

1.6 How to read this book

This book aims at providing an educational and self-contained overview of modern
applications ofML in quantum sciences. As such, Chapter 2 is devoted to theML pre-
requisites that are necessary to fully enjoy all themore advanced and further contents
of this book. We discuss in detail four main ML paradigms that have been success-
fully explored in quantum physics and chemistry: In Chapter 3, we describe how
supervised and unsupervised learning can be utilized to classify phases of matter.
In Chapter 4, we introduce kernel methods with a special focus on Gaussian pro-
cesses (GPs) and BO. Chapter 5 presents an overview of various representations of
quantum states based on NNs. Finally, in Chapter 6, we dive into the foundations of
RL and how it can be applied to quantum experiments.

In addition to these four pillars of ML in quantum sciences, there exists an excit-
ing two-way interplay between the natural sciences and AI. Chapter 7 focuses on
more specialized examples of how ML-related methods revolutionize quantum sci-
ence. In particular, we introduce the paradigm of di�erentiable programming ()P)
and describe how it is becoming an important numerical research tool. Moreover, we
discuss how ML methods assist researchers in tasks related to density estimation, as
well as optimizations and speedup of scienti�c experiments. There exists a vibrant
reverse in�uence onML coming from statistical physics (which we discuss in Section
8.1) and �nally quantum computing. We describe the promises of quantummachine
learning (QML) in Section 8.2. All in all, this book discusses the fruitful interplay of
AI and physical sciences. Its content with references to relevant sections is illustrated
in Fig. 1.3.

We encourage the reader to start with Chapters 1 and 2, that is, “Introduction”
and “Basics of Machine Learning.” Then, the reader is free to wander into any of
the independent Chapters 3–6 covering the four main paradigms, Section 7.1 on

7Bayesian optimization (BO) and active learning, while similar, are not the same. Active learning aims
to determine optimal sampling, while BO aims to �nd an extremum of a black-box function with as few
function evaluations as possible.
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