

INDEX

AC (alternating current) circuit fundamentals,	BEM theory
88-91	as combined theory, 41–44
access (construction), 239	modifications to, 46-50
active stall, 79, 80	bending analysis (blade), 192–94
actuator disc, 34-37	Betz limit, 36
aerodynamic damping, 155-57	binning, 11
aerodynamic damping coefficient, 377	bird impacts, 248–51, 343–45
aerodynamic loading	blade balancing, 203–5
deterministic, 147–50	blade edgewise vibration, 158–62
reference frames, 144–46	blade element theory, 38-41
steady, 146	blade manufacture
stochastic, 150-51	balancing in, 203-5
aerodynamic theory	GFRP (glass fibre reinforced plastic), 199-201
actuator disc, 34–37	wood-epoxy, 201–3
BEM, 41–44	blade number, 73
blade element, 38-41	blade structure
drag, 46–47	bending analysis, 192–94
dynamic inflow, 60–63	cantilever beam model, 182–86
momentum theory correction,	composite elements, 188–92
47–48	compressive buckling in, 186–88
multiple streamtube, 37–38	shear, 188
radial flow and stall delay, 48	blade testing, 205–8
rotor wake, 50–55	blade twist, 71–73
stall effects, 59-60	Block Island windfarm, 308
tangential induction factor, 47	blockage, 338-39
tip loss correction, 48–50	Blyth, James, 5–6
aerodynamics, large offshore arrays	boundary layer, 15
blockage, 338–39	brakes, mechanical, 133
wake steering, 339–41	
aeroelastic codes, 169	Campbell diagram, 158
aerofoil, 11	cantilever beam model, 182–86
ailerons, 82	capacity factor, 11
anchors, 365	carbon fibre reinforced plastic (CFRP), 177
drag-embedment, 385	Carter, President Jimmy, 1
suction bucket, 384	catenary, 382
anisotropy, 177	centrifugal loading, 154
annual energy output, 84	collision risk, 263–64
annual wind speed, 22, 23	composites
Archimedes' Law, 352	anistropy, 177
array interactions	elements of, 188–92
array losses, 222–26	fibre-reinforced, 177-82
wake turbulence, 226-30	compressive buckling, 186–88
aviation	constant speed, variable pitch (CSVP),
collision risk, 263-64	122–25
radar interference, 265–68	construction (wind turbine)
	access, 239
banking crisis of 2007-2008, 299	crane operations, 239–43
bat deterrent system, 251	crane road weight, 243–45
batteries, 403	foundations, 230–37
Beatrice Demonstrator, 306, 307	transport, 236–39

430 Index control electrical principles sector management, 134-35 fundamentals, 88-91 starting and stopping, 130-34 metering, 91 yaw, 119-20 electricity generation history (wind turbine), 5-6 control, power limiting electromechanical loading, 154 constant speed, variable pitch (CSVP), 122-25 energy crisis (1970s), 1 stall regulation, 122 energy storage, 393 variable speed, variable pitch (VSVP), 125-29 pumped hydro storage (PHS), 402 control-induced instability, floating platforms, 376-78 storage profiles, 394 Coriolis effect, 14 Texas (case study), 395-97 UK National Grid (case study), 394-95 cost (wind energy) calculations, 274-75 environment installation, 275-77 ecological, 248-51 intermittent generation affecting, 278 noise, 256-63 operational, 277 pollution risk, 255-56 environmental impacts (offshore) total, 278-79 crane operations (construction), 239-43 birds, 343-45 crane road weight, 243-45 marine mammals, 346-48 European windmills current loading, 332 currents, 320-22 early sail, 4 windfarm revolution in, 7-9 dampers, mechanical, 160 fatigue prediction, 170-73 damping, 155-57 day rates (offshore), 336 fault level (electrical), 103 deterministic loading, 144, 147-50, 167-68 fault protection, 109 disposal of blades, 405 fibre-reinforced composites, 177-82 distributed ownership, 288-90 fixed base foundations (offshore), 351 diurnal wind variation, 22-24 gravity, 352-53 jackets, 361-66 Donghai Bridge array, 308 double/multiple stall, 59-60 monopiles, 353-61 doubly fed induction generator (DFIG), 11, 95-96 other types, 366-68 fixed pitch (HAWT), 75 downwind rotor design (HAWT), 83-84 drag, 46-47 flicker drivetrain architecture, 325-29 defined, 105-7 fully integrated, 327 shadow, 255 hybrid, 327 floating foundations dynamic inflow, 60-63 control-induced instability, floating platforms, 376-78 dynamic loading, 139 mooring and connection, 382-86 dynamic response measurement semi-submersible and barge platforms, 378-81 load spectra, 166-67 spar buoy, 371-76 mean loads, 164-66 stability analysis, free-floating platforms, 368-71 for stochastic and deterministic loading, 167-68 tension-leg platform (TLP), 381 dynamic response, offshore wind turbine, 334-35 floating wind turbine, 307 dynamic stall, 59-60 foundation overturning loads (offshore), 324 foundations (construction), 230-37 ecological impacts, 248-51 gearless generators, 96-97 economics (wind turbine) cost, 274-79 Gedser wind turbine, 6 price, 279-81 generators, 91-101 supply and demand, 282-88 geostrophic wind, 13-15 electrical generator types GFRP (glass fibre reinforced plastic) blade manufacture, doubly fed induction generator, 95-96 199-201 gearless, 96-97 Gigha Community windfarm, 290-94 history of, 97-101 global offshore resource, 310-12 induction generator, 93-95 gradient wind speed, 13-15 permanent magnet generator (PMG), 92-93 gravitational loading, 151

gravity-based foundations, 352-53

gravity caisson, 307

synchronous generator, 93 variable-speed generator, 95–96

Index 431

grid capacity, 110-13 Keulegan Carpenter number, 329 grout, 355 Kincardine Offshore array, 379 grouted joint, 357 la Cour, Poul, 6 gust factor, 24-26 gust measurement, 24-26 Lely, 304, 353 gyroscopic loading, 152-53 levelised cost of energy (LCoE), 274, 400-3 lidar, 120 lift, aerodynamic, 40, 41 habitat disruption, 343 harmonics, 109-10 lightning protection, 113-15 Heronemus, William, 303 load spectra, 166-67 horizontal-axis wind turbines (HAWT) loading (structural) blade element theory, 38-41 aerodynamic, 144-51 deterministic, 144, 167-68 cantilever beam model for, 182-86 composite blade structure, 188-92 dynamic, 139 Costa Head wind turbine, 7 dynamic response measurement, 162-68 defined, 11 dynamic response of simple system, 139-41 drag and, 46-47 electromechanical, 154 Gedser wind turbine, 6 gravitational, 151 lightning protection for, 113 gyroscopic and centrifugal, 152-54 near-wake measurements of, 53-55 modal analysis, 141-44 tangential induction factor 47 predicting, 169-73 tip loss correction, 48-50 static, 139 vibration and resonance 154-55 stochastic, 144, 167-68 wood-epoxy blade manufacture, vibration and resonance, 154-55 201 - 3loading prediction yaw operation in, 58-59 aeroelastic codes for, 169 horizontal-axis wind turbines rotor fatigue, 170-73 aerodynamic control pitch control, fatigue impact of, ailerons, 82 173 - 74fixed pitch, 75 pitch control, 75-80 mammal impacts, 251 spoilers, 81 marine mammal impacts, 346-48 tip brakes, 81, 82 marinisation, 322-23 horizontal-axis wind turbines rotor design material safety factor, 193, 194 blade twist and pitch, 71-73 MCP analysis, 217-21 downwind, 83-84 mean load measurement, 164-66 number of blades in, 73 metacentric height, 370 power efficiency, 67-68 metering, 91 power, thrust, and torque, 65-66 metocean data, 316 tip speed ratio and solidity, 69 currents, 320-22 horizontal mooring stiffness, 383 wave characteristics, 317-20 Horns Rev I, 305 wind speeds, 316-17 Hütter, Ulrich, 177 microwave interference, 268-70 Hywind Demonstration project, modal analysis, 141-44 momentum theory correction, 47-48 307, 372 monopile foundations, 304, 353-61 IEC Wind Class, 215-16 structural failure of, 361 induction generator, 93-95 monopod bucket, 368 installation cost, 275-77 Morison's equation, 329, 332 multiple streamtube theory, 37-38instantaneous voltage, 88 inter-annual wind speed, 21 intermittency, 390-93 nacelle, 11 intermittent generation, 278 network characteristics (electrical), 101-3 jacket foundations, 361-66 noise jackup crane barge, 336 origins of, 256-57 Jonswap spectrum, 317, 349 planning limits to, 261-63 Juul, Johannes, 6 predicting, 258-61

432

offshore WECs, forces on power quality current loading, 332 fault protection, 109 dynamic response, 334-35 flicker, 105-7 wave loading, 329-32 grid capacity, 110-13 wind, wave and current loading, 332-34 harmonics, 109-10 offshore wind characteristics lightning protection, 113-15 detailed, 312-16 network characteristics, 101-3 global resource, 310-12 statcoms and SVCs, 107-9 metocean data, 316-22 steady-state voltage, 103-4 offshore wind foundations Prandtl, Ludwig, 52 fixed base foundations, 351-68 pricing (wind energy), 279-81 floating foundations, 368-86 public safety, 251-52 p-y method, 360 offshore wind power aerodynamics, large arrays, 338-41 wind characteristics, 310-22 radar interference, 265-68 first installation, 304 radial flow, 48 history of, 303-10 Rainflow algorithm, 170, 171 installation, 335-38 rated power, 12 offshore wind turbine blades, 323 Rayleigh distribution, 26, 82-83 cyclic loading, 323 recyclable blades, 403-5 pre-bend, 323 reference frames, 144-46 oil prices, 1, 2 renewables policy (UK), 294-98 operational costs, 277 resonance overbooking, 392 loading, 154-55 ownership tower, 157-58 distributed, 288-90 Riisager turbine, 8 Gigha Community windfarm, 290-94 rock anchors, 234 root attachment method, 194-98 rotational sampling, 150 panemones, 3 particle image velocimetry (PIV), 53 rotor aerodynamic control performance of offshore arrays, 341-43 fixed pitch, 75 permanent magnet generator (PMG), 11, 92-93, 326-27 pitch control, 75-80 persistence, 314 spoilers, 81 tip brakes, 82 pin piles, 364 pitch (HAWT), 71-73 rotor blade technology pitch angle, 72 anistropy, 177 pitch control (HAWT), 75-80 blade manufacture, 198-205 pitch/roll frequency, spar buoy, 374-76 blade structure, 182-94 planning fibre-reinforced composites, 177-82 aviation, 263-68 root attachment method, 194-98 microwave interference, 268-70 testing, 205-8 public safety, 251-52 weight, 208-11 shadow flicker, 255 rotor design television, 270-71 blade twist and pitch, 71-73 visual impact, 252-55 downwind rotor, 83-84 platform pitching motion, 374 number of blades, 73 policy (wind energy) power curve and energy capture, 84-85 ownership, 288-94 power efficiency, 67-68 renewables (UK), 294-98 power, thrust, and torque, 65-66 pollution risk, 255-56 tip speed ratio and solidity, 69 rotor wake porpoises, 346 post mills, 4 schematics of, 50-51 power vortex wake analysis, 52-53 HAWT rotor, 65-68 roughness length, 15 limiting, 121-29 power coefficient, 11 sails (wind power), 3-4

scaling (of wind turbines), 9-10

Scheer, Hermann, 390

Index

power density, 391

power factor, 11

Index 433

Scoraig community, 393	tip brakes (HAWT), 81, 82
scour, 361	tip loss correction, 48-50
seals, 346	tip speed ratio
sector management, 134–35	defined, 12
semi-submersible, 368, 376	HAWT rotor, 69
shadow flicker, 255	topography
shear keys, 357	effects on wind, 28–31
significant wave height, 317	wind shear estimation and, 15
siting (wind turbine)	torque (HAWT), 65–66
array interactions, 222-30, 336	tower height, 324–25
wind assessment, 214–21	tower resonance, 157–58
slenderness ratio, 355	tower shadow, 147
Smeaton, John, 4, 5	transition piece, 355, 357
smock mills, 4	transport (wind turbine), 236–39
solar energy, 13	tripod foundation, 367
solidity	turbulence, 18
defined, 12	defined, 18–20
HAWT rotor, 69	site assessment of, 221
space scales (wind variation), 21–23	wake, 226–30
spar buoy, 307, 368, 371–76	turbulence intensity, 19–20
splash zone, 322	,,
spoilers, 81	UK National Grid, energy storage, 394-95
square-cube law, 9	0-1-1-1111-1111-11-11-11-11-11-11-11-11-
stall delay, 48	vacuum resin infusion moulding (VRIM)
stall effects, 59–60	blade manufacturing, 198
stall regulation	defined, 12
HAWT rotor, 75	variable speed, variable pitch (VSVP), 125–29
for power control, 122	variable-speed generator, 95–96
starting sequence, 130–34	vertical-axis wind turbines (VAWT), 12
statcoms, 107–9	vibration
static loading, 139	blade edgewise, 158–62
static VAR compensator (SVC), 107–9	loading, 154–55
steady loading, 146	Vindeby, 304, 322, 352
steady-state platform pitch, 373	visual impact, 252–55
steady-state voltage, 103–4	voltage (steady-state), 103–4
stochastic loading, 144, 150–51, 167–68	voltage control, 104
stopping sequence, 130–34	vortex wake
subsea jacket, 306, 359	analysis, 52–53
subsea soil, 359	near-wake measurements of, 53–55
suction caissons, 365	near wake measurements of, 33 33
suction piles, 365	wake steering, 339–41
supply and demand	wake turbulence, 226–30
background of, 282–83	wake velocity deficit, 53–55, 338
for on-site generation, 283–85	wave characteristics, 317–20
wide scale generation, 286–88	extreme wave height, 317
sustainability, 403	fetch, 317
decommissioning and disposal, 405–7	maximum wave height, 317
manufacture, 404–5	significant wave height, 317
synchronous generator, 93	wave velocity profile, 319
synchronous generator, 93	wave velocity profile, 319 wave loading, 329–32
tangential induction factor, 47	extreme, 330
television interference, 270–71	Weibull wind distribution, 26–27
tension-leg platform (TLP), 368, 381	weight (rotor blade), 208–11
Texas, energy storage, 395–97	wet mate connectors (WMCs), 386
	· · · · · · · · · · · · · · · · · · ·
Thornton Bank I array, 352	whale, 347
thrust (HAWT), 65–66	winch erection, 242–43
tides, 316	wind and solar, combining renewables,
time scales (wind variation), 21–23	397–403

434

wind assessment MCP analysis, 217-21 site measurement, 216-17 turbulence and shear, 221 wind resource, 214-15 wind characteristics geostrophic wind, 13-15 gradient wind speed, 14-15 gust measurement, 24-26 offshore, 310-22 time and space scales, 21-23 topographic factors, 28-31 turbulence, 18-20 Weibull wind distribution, 26-27 wind shear, 15-17 wind energy converter (WEC), 12, 329-32 wind shear, 12, 15 defined, 15-17 diurnal, 23-24

Index

profiles, 16 for site assessment, 221 wind speeds (offshore), 316-17 wind turbine generator (WTG), 12 wind turbine history archaeology, 3-5 scaling, 9-10 start of electric generation, 5-6 windfarms, 7-9 windfarms Gigha Community, 290-94 revolution, 7-9 Windfloat 1, 379 wooden tower, 405 wood-epoxy blade manufacture, 201-3 control, 119-20 operation in, 58-59