WIRELESS COMMUNICATIONS

UPDATED SECOND EDITION

Now reissued and updated by Cambridge University Press, the second edition of this definitive textbook provides an unrivalled introduction to the theoretical and practical fundamentals of wireless communications.

Key features

- Key technical concepts are developed from first principles, and demonstrated to students using over 50 carefully curated worked examples.
- Over 200 end-of-chapter problems, based on real-world industry scenarios, help cement student understanding. New problems for 4G and 5G are added.
- Thorough coverage of foundational wireless technologies, including wireless local area networks (WLAN), 3G systems, and Bluetooth, with brief summaries of the latest in 4G, 5G, fixed wireless access, and mobile satellite communications.

Supported online by a solutions manual and lecture slides for instructors, this is the ideal foundation for senior undergraduate and graduate courses in wireless communications.

Theodore S. Rappaport is the David Lee/Ernst Weber Professor at New York University (NYU) and founded the NYU WIRELESS research center, and the wireless research centers at the University of Texas Austin and Virginia Tech. Professor Rappaport is a member of the National Academy of Engineering, the Wireless Hall of Fame, a Fellow of the National Academy of Inventors and a Fellow of the IEEE.

WIRELESS COMMUNICATIONS

PRINCIPLES AND PRACTICE

UPDATED SECOND EDITION

Theodore S. Rappaport

New York University

Cambridge University Press & Assessment 978-1-009-48983-6 — Wireless Communications Theodore S. Rappaport Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009489836

DOI: 10.1017/9781009489843

© Pearson Education, Inc. 1996, 2002 © Theodore S. Rappaport 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009489843

This book was previously published by Pearson Education, Inc. 1996, 2002 Reissued by Cambridge University Press 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-48983-6 Hardback

Additional resources for this publication at www.cambridge.org/rappaport2e

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-48983-6 — Wireless Communications Theodore S. Rappaport Frontmatter <u>More Information</u>

> The Lord has blessed me with a wonderful family, dear friends, excellent colleagues, and terrific students.

To all students, young and old

Contents

	Preface	xix
1	Introduction to Wireless Communication Systems	1
	1.1 Evolution of Mobile Radio Communications	1
	1.2 Mobile Radiotelephony in the U.S.	4
	1.3 Mobile Radio Systems Around the World	6
	1.4 Examples of Wireless Communication Systems	9
	1.4.1 Paging Systems	11
	1.4.2 Cordless Telephone Systems	12
	1.4.3 Cellular Telephone Systems	13
	1.4.3.1 How a Cellular Telephone Call is Made	15
	1.4.4 Comparison of Common Wireless Communication Systems	18
	1.5 Trends in Cellular Radio and Personal Communications	20
	1.6 Problems	22
2	Modern Wireless Communication Systems	25
	2.1 Second Generation (2G) Cellular Networks	26
	2.1.1 Evolution to 2.5G Wireless Networks	29
	2.1.2 Evolution for 2.5G TDMA Standards	30
	2.1.2.1 HSCSD for 2.5G GSM	30
	2.1.2.2 GPRS for 2.5G GSM and IS-136	31
	2.1.2.3 EDGE for 2.5G GSM and IS-136	33
	2.1.3 IS-95B for 2.5G CDMA	34
	2.2 Third Generation (3G) Wireless Networks	34
	2.2.1 3G W-CDMA (UMTS)	37
	2.2.2 3G cdma2000	38
	2.2.3 3G TD-SCDMA	39

viii		Contents
	2.3 Wireless Local Loop (WLL) and LMDS	40
	2.4 Wireless Local Area Networks (WLANs)	46
	2.5 Bluetooth and Personal Area Networks (PANs)	52
	2.6 Summary	54
	2.7 Problems	55
3	The Cellular Concept—System Design Fundamentals	57
	3.1 Introduction	57
	3.2 Frequency Reuse	58
	3.3 Channel Assignment Strategies	62
	3.4 Handoff Strategies	62
	3.4.1 Prioritizing Handoffs	65
	3.4.2 Practical Handoff Considerations	66
	3.5 Interference and System Capacity	6/
	3.5.1 Co-channel Interference and System Capacity	68 72
	3.5.2 Channel Planning for Wireless Systems	72
	3.5.3 Adjacent Channel Interference	74
	3.6 Trunking and Grade of Service	70
	3.7 Improving Coverage & Conscitutin Callular Systems	86
	3.7.1 Cell Splitting	86
	3.7.2 Sectoring	90
	3.7.3 Repeaters for Range Extension	93
	374 A Microcell Zone Concept	93
	3.8 Summary	96
	3.9 Problems	97
4	Mobile Radio Propagation: Large-Scale Path Loss	105
	4.1 Introduction to Radio Wave Propagation	105
	4.2 Free Space Propagation Model	107
	4.3 Relating Power to Electric Field	110
	4.4 The Three Basic Propagation Mechanisms	113
	4.5 Reflection	114
	4.5.1 Reflection from Dielectrics	114
	4.5.2 Brewster Angle	119
	4.5.3 Reflection from Perfect Conductors	120
	4.6 Ground Reflection (Two-Ray) Model	120
	4.7 Diffraction	126
	4.7.1 Fresnel Zone Geometry	126
	4.7.2 Knife-edge Diffraction Model	129
	4.7.3 Multiple Knife-edge Diffraction	134
	4.8 Scattering	135
	4.8.1 Radar Cross Section Model	136

ontents		ix
40 Pra	ctical Link Budget Design Using Path Loss Models	138
4.91	Log-distance Path Loss Model	138
492	Log distance r an Loss wood	130
4.9.3	Determination of Percentage of Coverage Area	141
4.10 Ou	adoor Propagation Models	145
4.10.1	Longlev–Rice Model	145
4.10.2	Durkin's Model—A Case Study	146
4.10.3	Okumura Model	150
4.10.4	Hata Model	153
4.10.5	PCS Extension to Hata Model	154
4.10.6	Walfisch and Bertoni Model	155
4.10.7	Wideband PCS Microcell Model	155
4.11 Ind	oor Propagation Models	157
4.11.1	Partition Losses (same floor)	157
4.11.2	Partition Losses between Floors	160
4.11.3	Log-distance Path Loss Model	161
4.11.4	Ericsson Multiple Breakpoint Model	161
4.11.5	Attenuation Factor Model	163
4.12 Sig	nal Penetration into Buildings	166
4.13 Ray	Tracing and Site Specific Modeling	167
4.14 Pro	blems	168
5 Mob	ile Radio Propagation: Small-Scale Fading and Multipath	177
5.1 Sm	all-Scale Multipath Propagation	177
5.1.1	Factors Influencing Small-Scale Fading	178
5.1.2	Doppler Shift	179
5.2 Im	pulse Response Model of a Multipath Channel	181
5.2.1	Relationship Between Bandwidth and Received Power	185
5.3 Sm	all-Scale Multipath Measurements	192
5.3.1	Direct RF Pulse System	192
5.3.2	Spread Spectrum Sliding Correlator Channel Sounding	193
5.3.3	Frequency Domain Channel Sounding	196
5.4 Par	ameters of Mobile Multipath Channels	197
5.4.1	Time Dispersion Parameters	199
5.4.2	Coherence Bandwidth	202
5.4.3	Doppler Spread and Coherence Time	203
5.5 Ty	bes of Small-Scale Fading	205
5.5.1	Fading Effects Due to Multipath Time Delay Spread	205
5	.5.1.1 Flat fading	205
5	.5.1.2 Frequency Selective Fading	207
5.5.2	Fading Effects Due to Doppler Spread	208
5	.5.2.1 Fast Fading	208
5	.5.2.2 Slow Fading	209

x	Contents
5.6 Rayleigh and Ricean Distributions	210
5.6.1 Rayleigh Fading Distribution	210
5.6.2 Ricean Fading Distribution	212
5.7 Statistical Models for Multipath Fading Channels	214
5.7.1 Clarke's Model for Flat Fading	214
5.7.1.1 Spectral Shape Due to Doppler Spread in Clarke's Mod	lel 217
5.7.2 Simulation of Clarke and Gans Fading Model	220
5.7.3 Level Crossing and Fading Statistics	223
5.7.4 Two-ray Rayleigh Fading Model	226
5.7.5 Saleh and Valenzuela Indoor Statistical Model	227
5.7.6 SIRCIM and SMRCIM Indoor and Outdoor Statistical Model	ls 227
5.8 Theory of Multipath Shape Factors for Small-Scale Fading Wireles	s Channels 229
5.8.1 Introduction to Shape Factors	230
5.8.1.1 Multipath Shape Factors	232
Angular Spread, Λ	232
Angular Constriction, γ	233
Azimuthal Direction of Maximum Fading, θ_{max}	233
5.8.1.2 Fading Rate Variance Relationships	233
Complex Received Voltage, $V(r)$	233
Received Power, $P(r)$	234
Received Envelope, $R(r)$	234
5.8.1.3 Comparison to Omnidirectional Propagation	234
5.8.2 Examples of Fading Behavior	236
5.8.2.1 Sector Channel Model	236
5.8.2.2 Double Sector Channel Model	239
5.8.2.3 Ricean Channel Model	240
5.8.3 Second-Order Statistics Using Shape Factors	240
5.8.3.1 Level-Crossing Rates and Average Fade Duration	242
5.8.3.2 Spatial Autocovariance	242
5.8.3.3 Coherence Distance	243
5.8.4 Applying Shape Factors to Wideband Channels	243
5.8.5 Revisiting Classical Channel Models with Shape Factors	244
5.9 Summary	247
5.10 Problems	248
6 Modulation Techniques for Mobile Radio	255
6.1 Frequency Modulation vs. Amplitude Modulation	256
6.2 Amplitude Modulation	257
6.2.1 Single Sideband AM	260
6.2.2 Pilot Tone SSB	261
6.2.3 Demodulation of AM signals	262
6.3 Angle Modulation	262
6.3.1 Spectra and Bandwidth of FM Signals	264
6.3.2 FM Modulation Methods	260
	207

Contents		xi
6.3.3	FM Detection Techniques	268
6.3.4	Tradeoff Between SNR and Bandwidth in an FM Signal	276
6.4 Dig	ital Modulation—an Overview	277
6.4.1	Factors That Influence the Choice of Digital Modulation	278
6.4.2	Bandwidth and Power Spectral Density of Digital Signals	281
6.5 Line	e Coding	282
6.6 Puls	e Shaping Techniques	282
6.6.1	Nyquist Criterion for ISI Cancellation	282
6.6.2	Raised Cosine Rolloff Filter	287
6.6.3	Gaussian Pulse-Shaping Filter	290
6.7 Geo	metric Representation of Modulation Signals	291
6.8 Line	ear Modulation Techniques	294
6.8.1	Binary Phase Shift Keying (BPSK)	295
6.8.2	Differential Phase Shift Keying (DPSK)	298
6.8.3	Quadrature Phase Shift Keying (QPSK)	300
6.8.4	QPSK Transmission and Detection Techniques	301
6.8.5	Offset QPSK	303
6.8.6	π/4 QPSK	305
6.8.7	$\pi/4$ QPSK Transmission Techniques	305
6.8.8	$\pi/4$ QPSK Detection Techniques	308
6.9 Con	stant Envelope Modulation	311
6.9.1	Binary Frequency Shift Keying	312
6.9.2	Minimum Shift Keying (MSK)	314
6.9.3	Gaussian Minimum Shift Keying (GMSK)	318
6.10 Cor	nbined Linear and Constant Envelope Modulation Techniques	322
6.10.1	M-ary Phase Shift Keying (MPSK)	323
6.10.2	M-ary Quadrature Amplitude Modulation (QAM)	325
6.10.3	M-ary Frequency Shift Keying (MFSK) and OFDM	328
6.11 Spr	ead Spectrum Modulation Techniques	329
6.11.1	Pseudo-Noise (PN) Sequences	330
6.11.2	Direct Sequence Spread Spectrum (DS-SS)	331
6.11.3	Frequency Hopped Spread Spectrum (FH–SS)	334
6.11.4	Performance of Direct Sequence Spread Spectrum	335
6.11.5	Performance of Frequency Hopping Spread Spectrum	338
6.12 Mo	lulation Performance in Fading and Multipath Channels	339
6.12.1	Performance of Digital Modulation in Slow Flat-Fading Channels	340
6.12.2	Digital Modulation in Frequency Selective Mobile Channels	344
6.12.3	Performance of $\pi/4$ DQPSK in Fading and Interference	346
6.13 Prol	blems	350
7 Equa	lization, Diversity, and Channel Coding	355
7.1 Intr	oduction	355
7.2 Fun	damentals of Equalization	356
7.3 Trai	ning A Generic Adaptive Equalizer	359

xii	Contents
7.4 Equalizers in a Communications Receiver	363
7.5 Survey of Equalization Techniques	364
7.6 Linear Equalizers	366
7.7 Nonlinear Equalization	368
7.7.2 Marine Hile Headback Equalization (DFE)	369
7.1.2 Maximum Likelinood Sequence Estimation (MLSE) Equalizer	370
7.8 1 Zero Forcing Algorithm	374
7.8.2 Least Mean Square Algorithm	374
7.6.2 Least Mean Squares Algorithm	374
7.8.4 Summary of Algorithms	370
7.9 Fractionally Spaced Equalizers	380
7.10 Diversity Techniques	380
7 10 1 Derivation of Selection Diversity Improvement	381
7 10.2 Derivation of Maximal Ratio Combining Improvement	384
7.10.3 Practical Space Diversity Considerations	385
7.10.3.1 Selection Diversity	386
7.10.3.2 Feedback or Scanning Diversity	386
7.10.3.3 Maximal Ratio Combining	387
7.10.3.4 Equal Gain Combining	387
7.10.4 Polarization Diversity	387
7.10.5 Frequency Diversity	390
7.10.6 Time Diversity	390
7.11 RAKE Receiver	391
7.12 Interleaving	393
7.13 Fundamentals of Channel Coding	394
7.14 Block Codes and Finite Fields	395
7.14.1 Examples of Block Codes	399
7.14.2 Case Study: Reed–Solomon Codes for CDPD	400
7.14.2.1 Reed–Solomon Encoding	401
7.14.2.2 Reed–Solomon Decoding	404
7.15 Convolutional Codes	407
7.15.1 Decoding of Convolutional Codes	409
7.15.1.1 The Viterbi Algorithm	409
7.15.1.2 Other Decoding Algorithms for Convolutional Codes	410
7.16 Coding Gain	411
7.17 Trellis Coded Modulation	412
7.18 Turbo Codes	412
7.19 Problems	412
8 Speech Coding	415
8.1 Introduction	415
8.2 Characteristics of Speech Signals	417

Contents		xiii

8.3	Quantization Techniques	418
	8.3.1 Uniform Quantization	418
	8.3.2 Nonuniform Quantization	419
	8.3.3 Adaptive Quantization	421
	8.3.4 Vector Quantization	422
8.4	Adaptive Differential Pulse Code Modulation (ADPCM)	423
8.5	Frequency Domain Coding of Speech	425
	8.5.1 Sub-band Coding	425
	8.5.2 Adaptive Transform Coding	428
8.6	Vocoders	429
	8.6.1 Channel Vocoders	429
	8.6.2 Formant Vocoders	430
	8.6.3 Cepstrum Vocoders	430
	8.6.4 Voice-Excited Vocoder	431
8.7	Linear Predictive Coders	431
	8.7.1 LPC Vocoders	431
	8.7.2 Multipulse Excited LPC	434
	8.7.3 Code-Excited LPC	434
	8.7.4 Residual Excited LPC	436
8.8	Choosing Speech Codecs for Mobile Communications	436
8.9	The GSM Codec	440
8.10	The USDC Codec	442
8.11	Performance Evaluation of Speech Coders	442
8.12	Problems	445
0	Multiple A coose Techniques for Windows Communications	447
9	Multiple Access Techniques for Wireless Communications	44/
9.1	Introduction	447
	9.1.1 Introduction to Multiple Access	448
9.2	Frequency Division Multiple Access (FDMA)	449
9.3	Time Division Multiple Access (TDMA)	453
9.4	Spread Spectrum Multiple Access	456
	9.4.1 Frequency Hopped Multiple Access (FHMA)	457
	9.4.2 Code Division Multiple Access (CDMA)	458
	9.4.3 Hybrid Spread Spectrum Techniques	459
9.5	Space Division Multiple Access (SDMA)	461
9.6	Packet Radio	462
	9.6.1 Packet Radio Protocols	463
	9.6.1.1 Pure ALOHA	464
	9.6.1.2 Slotted ALOHA	465
	9.6.2 Carrier Sense Multiple Access (CSMA) Protocols	466
	9.6.3 Reservation Protocols	467
	9.6.3.1 Reservation ALOHA	467
	9.6.3.2 Packet Reservation Multiple Access (PRMA)	468

xiv	Contents
9.7 Capacity of Cellular Systems	469
9.7.1 Capacity of Cellular CDMA	474
9.7.2 Capacity of CDMA with Multiple Cells	477
9.7.3 Capacity of Space Division Multiple Access	484
9.8 Problems	488
10 Wireless Networking	491
10.1 Introduction to Wireless Networks	491
10.2 Differences Between Wireless and Fixed Telephone Netwo	orks 493
10.2.1 The Public Switched Telephone Network (PSTN)	493
10.2.2 Limitations in Wireless Networking	495
10.2.3 Merging Wireless Networks and the PSTN	496
10.3 Development of Wireless Networks	497
10.3.1 First Generation Wireless Networks	497
10.3.2 Second Generation Wireless Networks	499
10.3.3 Third Generation Wireless Networks	500
10.4 Fixed Network Transmission Hierarchy	501
10.5 Traffic Routing in Wireless Networks	502
10.5.1 Circuit Switching	503
10.5.2 Packet Switching	504
10.5.3 The X.25 Protocol	505
10.6 Wireless Data Services	506
10.6.1 Cellular Digital Packet Data (CDPD)	506
10.6.2 Advanced Radio Data Information Systems (ARDIS	508
10.6.3 RAM Mobile Data (RMD)	508
10.7 Common Channel Signaling (CCS)	510
10.7.1 The Distributed Central Switching Office for CCS	510
10.8 Integrated Services Digital Network (ISDN)	512
10.8.1 Broadband ISDN and ATM	513
10.9 Signaling System No. 7 (SS7)	514
10.9.1 Network Services Part (NSP) of SS7	515
10.9.1.1 Message Transfer Part (MTP) of SS7	516
10.9.1.2 Signaling Connection Control Part (SCCP) of	SS7 517
10.9.2 The SS7 User Part	517
10.9.2.1 Integrated Services Digital Network User Part	(ISUP) 517
10.9.2.2 Transaction Capabilities Application Part (TC	AP) 518
10.9.2.3 Operation Maintenance and Administration Pa	rt (OMAP) 518
10.9.3 Signaling Traffic in SS7	518
10.9.4 SS7 Services	519
10.9.5 Performance of SS7	519
10.10 An Example of SS7 — Global Cellular Network Interoper	ability 520

Contents	xv
10.11 Personal Communication Services/Networks (PCS/PCNs)	522
10.11.1 Packet vs. Circuit Switching for PCN	523
10.11.2 Cellular Packet-Switched Architecture	523
10.11.2.1 Network Functionality in Cellular Packet-Switched Architecture	527
10.12 Protocols for Network Access	527
10.12.1 Packet Reservation Multiple Access (PRMA)	528
10.13 Network Databases	529
10.13.1 Distributed Database for Mobility Management	529
10.14 Universal Mobile Telecommunication System (UMTS)	530
10.15 Summary	531
11 Wireless Systems and Standards	533
11.1 AMPS and ETACS	533
11.1.1 AMPS and ETACS System Overview	534
11.1.2 Call Handling in AMPS and ETACS	535
11.1.3 AMPS and ETACS Air Interface	537
11.1.4 N-AMPS	540
11.2 United States Digital Cellular (IS-54 and IS-136)	541
11.2.1 USDC Radio Interface	542
11.2.2 United States Digital Cellular Derivatives (IS-94 and IS-136)	548
11.3 Global System for Mobile (GSM)	549
11.3.1 GSM Services and Features	550
11.3.2 GSM System Architecture	551
11.3.3 GSM Radio Subsystem	553
11.3.4 GSM Channel Types	555
11.3.4.1 GSM Traffic Channels (TCHs)	555
11.3.4.2 GSM Control Channels (CCH)	557
11.3.5 Example of a GSM Call	560
11.3.0 Frame Structure for GSM	501
11.5.7 Signal Processing in OSW	567
11.4 CDMA Digital Central Standard (15-95)	567
11.4.2 Forward CDMA Channel	569
11.4.2.1 Convolutional Encoder and Repetition Circuit	569
11422 Block Interleaver	571
11 4 2 3 Long PN Sequence	571
11.4.2.4 Data Scrambler	572
11.4.2.5 Power Control Subchannel	572
11.4.2.6 Orthogonal Covering	573
11.4.2.7 Quadrature Modulation	574
11.4.3 Reverse CDMA Channel	575
11.4.3.1 Convolutional Encoder and Symbol Repetition	576
11.4.3.2 Block Interleaver	576

Cambridge University Press & Assessment 978-1-009-48983-6 — Wireless Communications Theodore S. Rappaport Frontmatter <u>More Information</u>

xvi	Contents
11.4.3.4 Variable Data Rate Transmission	576
11.4.3.5 Direct Sequence Spreading	578
11.4.3.6 Quadrature Modulation	580
11.4.4 IS-95 with 14.4 kbps Speech Coder [ANS95]	580
11.5 CT2 Standard for Cordless Telephones	580
11.5.1 CT2 Services and Features	580
11.5.2 The CT2 Standard	581
11.6 Digital European Cordless Telephone (DECT)	582
11.6.1 Features and Characteristics	582
11.6.2 DECT Architecture	582
11.6.3 DECT Functional Concept	584
11.6.4 DECT Radio Link	584
11.7 PACS — Personal Access Communication Systems	587
11.7.1 PACS System Architecture	587
11.7.2 PACS Radio Interface	587
11.8 Pacific Digital Cellular (PDC)	590
11.9 Personal Handyphone System (PHS)	590
11.10 US PCS and ISM Bands	591
11.11 US Wireless Cable Television	593
11.12 Summary of Standards Throughout the World	594
11.13 Problems	597
A P P E N D I C E S	
A Trunking Theory	601
A.1 Erlang B	602
A.1.1 Derivation of Erlang B	602
A.2 Erlang C	607
A.2.1 Derivation of Erlang C	607
B Noise Figure Calculations for Link Budgets	611
C Rate Variance Relationships for Shape Factor Theory	615
C.1 Rate Variance for Complex Voltage	615
C.2 Rate Variance for Power	617
C.3 Rate Variance for Envelope	617
D Approximate Spatial Autocovariance Function	
for Shape Factor Theory	619
E Gaussian Approximations for Spread Spectrum CDMA	621

: Gaussian Approximations for Spread Spectrum CDMA			621
	E.1	The Gaussian Approximation	629
	E.2	The Improved Gaussian Approximation (IGA)	635
	Г 2	$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = $	(27

E.3 A Simplified Expression for the Improved Gaussian Approximation (SEIGA) 637

ents
Q, erf & erfc Functions
F.1 The <i>Q</i> -Function
F.2 The <i>erf</i> and <i>erfc</i> Functions
Mathematical Tables, Functions, and Transforms
Abbreviations and Acronyms
References
References

Preface

The updated second edition of this text introduces the newcomer to wireless personal communications, one of the most important fields in the engineering world. Technical concepts which are at the core of design, implementation, research, and invention of wireless communication systems are presented in an order that is conducive to understanding general concepts, as well as those specific to current and evolving wireless communication systems and standards. This text is based upon my experiences as an educator, researcher, entrepreneur, and consultant, and continues to be modeled from an academic course first developed for electrical engineering students in 1990, when there were fewer than five million cellular subscribers worldwide. At the beginning of the 21st century, more than 600 million people, about 10% of the world's population, paid a monthly subscription for wireless telephone service, and in 2023, more than 7 billion cellphone users exist (~90% of our planet's population).

This text continues to evolve, and has been modified and updated since its first edition, making it a useful book for practicing engineers, as well as for researchers, graduate students, and undergraduate students. The text has been prepared to provide fundamental treatment about many practical and theoretical concepts that form the basis of wireless communications, and has been designed for easy but thorough treatment of vital material that all wireless practitioners must be comfortable with. I have tried to emphasize the technical concepts with worked example problems, and numerous, carefully crafted homework problems at the end of each chapter that are based on real-world industry issues. The updated second edition contains dozens of new homework problems and examples, as well as up-to-the minute technical details of the many emerging wireless standards throughout the world, making this book particularly useful for industry short-courses or state-of-the-art academic classroom use.

ХХ

Preface

References to journal articles are used liberally throughout this text to enable the interested reader to delve into additional reading that is always required to master any field. To support newcomers to the wireless field, and at the request of the Institute of Electrical and Electronics Engineers (IEEE), I have also prepared a low-cost two volume compendium of many of the original journal articles that first taught the fundamentals that are now used throughout the wireless industry—this compendium series is a useful, but not required, supplement to this text. Whether you intend to use this book for individual study, or for classroom use, or for use as a handbook, this text has been written as a complete, self-contained teaching and reference book. The numerous examples and problems found throughout the text have been provided to help the reader solidify the material.

This book has been designed for the student or practicing engineer who is already familiar with technical concepts such as probability, communication theory, and basic electromagnetics. However, like the wireless communications industry itself, this book combines material from many different technical disciplines, so it is unlikely that any one person will have had introductory courses for all of the topics covered. To accommodate a wide range of backgrounds, important concepts throughout the text are developed from first principles, so that readers learn the foundations of wireless communications. This approach makes it possible to use this book as a handbook or as a useful teaching tool in a classroom setting.

The material and chapter sequence in this text have been adapted from an entry-level graduate course which I first taught in 1991 at the Virginia Polytechnic Institute and State University. Chapter 1 demonstrates the historic evolution of the wireless communications industry, and the evolution of wireless systems from first generation analog to second generation (2G) digital systems. Chapter 1 also documents the rapid early growth of cellular radio throughout the world and provides a state of the industry in the mid 1990s. Chapter 2 provides an overview of the major modern wireless communication systems of the 21^{st} century, such as third generation (3G), Wireless Local Area Networks (WLANs), Local Multipoint Distribution Services (LMDS), and Bluetooth. Chapter 2 also touches on how 4G and 5G have evolved to now include millimeter wave bands within a single standard. Chapter 3 covers fundamental cellular radio concepts such as frequency reuse and handoff, which are at the core of providing wireless communication service to subscribers on the move using limited radio spectrum. Chapter 3 also demonstrates the principal of trunking efficiency, and how trunking and interference issues between mobiles and base stations combine to affect the overall capacity of cellular systems. Chapter 4 presents radio propagation path loss, link-budgets, and log-normal shadowing, and describes different ways to model and predict the large-scale effects of radio propagation in many operating environments. Chapter 5 covers small-scale propagation effects such as fading, time delay spread, and Doppler spread, and describes how to measure and model the impact that signal bandwidth and motion have on the instantaneous received signal through the multipath channel. Radio wave propagation has historically been the most difficult problem to analyze and design for, since unlike a wired communication system which has a constant, stationary transmission channel (i.e., a wired path), radio channels are random and undergo shadowing and multipath fading, particularly when one of the

Preface

xxi

terminals is in motion. New material in Chapter 5 also teaches a fundamental and new way of modeling spatial-temporal channels, which is vital for the development of *smart antennas* and position location systems.

Chapter 6 provides extensive coverage of the most common analog and digital modulation techniques used in wireless communications and demonstrates tradeoffs that must be made in selecting a modulation method. Issues such as receiver complexity, modulation and demodulation implementation, bit error rate analysis for fading channels, and spectral occupancy are presented. Channel coding, adaptive equalization, and antenna diversity concepts are presented in Chapter 7. In portable radio systems where people communicate while walking or driving, these methods may be used individually or in tandem to improve the quality (that is, reduce the bit error rate) of digital mobile radio communications in the presence of fading and noise.

Chapter 8 provides an introduction to speech coding. In the past decade, there has been remarkable progress in decreasing the needed data rate of high quality digitized speech, which enables wireless system designers to match end-user services to network architectures. Principles which have driven the development of adaptive pulse code modulation and linear predictive coding techniques are presented, and how these techniques are used to evaluate speech quality in existing and proposed cellular, cordless, and personal communication systems are discussed. Chapter 9 introduces time, frequency, and code division multiple access, as well as more recent multiple access techniques such as packet reservation and space division multiple access. Chapter 9 also describes how each access method can accommodate a large number of mobile users and demonstrates how multiple access impacts capacity and the network infrastructure of a cellular system. Chapter 10 describes networking considerations for wide area wireless communication systems, and presents practical networking approaches that are in use or have been proposed for future wireless systems. Chapter 11 unites all of the material from the first nine chapters by describing and comparing the major existing second generation (2G) cellular, cordless, and personal communication systems throughout the world. The tradeoffs made in the design and implementation of wireless personal communications systems are illuminated in this final chapter. The compilation of the major wireless standards makes Chapter 11 particularly useful as a single source of information for a wide range of wireless systems that are commercially deployed today.

Appendices which cover trunking theory, noise figure, noise calculations, and the Gaussian approximation for spread spectrum code division systems provide details for those interested in solving many practical wireless communications problems. The appendices also include hundreds of mathematical formulas and identities for general engineering work. I have attempted to place numerous useful items in the appendices, so that this text may be easily used by students or practicing engineers to solve a wide range of problems that may be outside the scope of the immediate text.

xxii

Preface

For industry use, Chapters 1–5, 9, and 11 will benefit working engineers in the cellular/ PCS system design and radio frequency (RF) deployment, operations, and maintenance areas. Chapters 1, 2, 6–8, and 11 are tailored for modem designers and digital signal processing (DSP) engineers new to wireless. Chapters 1, 2, 10, and 11 should have broad appeal to network operators and managers, business and legal professionals, as well as working engineers.

To use this text at the undergraduate level, the instructor may wish to concentrate on Chapters 1–6, or Chapters 1–5, and 9, leaving the other chapters for treatment in a second semester undergraduate course or a graduate level course. Alternatively, traditional undergraduate courses on communications or network theory may find in Chapters 1, 2, 3, 4, 6, 8, 9, and 10 useful material that can be inserted easily into the standard curriculum. In using this text at the graduate level, I have been successful in covering most of the material in Chapters 1–6 and 10 during a standard half-year semester and Chapters 7–11 in a follow-on graduate course. In Chapters 2, 10, and 11, I have attempted to cover important but rarely compiled information on practical network implementations and worldwide standards.

Without the help and ingenuity of several former graduate students, this text could not have been written. I am pleased to acknowledge the help and encouragement of Rias Muhamed, Varun Kapoor, Kevin Saldanha, and Anil Doradla-students I met in class while teaching an early version of the course Cellular Radio and Personal Communications, as well as my friend and former doctoral student, Greg Durgin. Kevin Saldanha also provided camera-ready copy for the first edition of this text (which turned out to be no small task!). The assistance of these students in compiling and editing materials for several chapters of this text was invaluable, and they were a source of constant encouragement throughout the project. Others who offered helpful suggestions, and whose research efforts are reflected in portions of this text, include Scott Seidel, Joe Liberti, Dwayne Hawbaker, Marty Feuerstein, Yingie Li, Ken Blackard, Victor Fung, Weifang Huang, Prabhakar Koushik, Orlando Landron, Francis Dominique, Greg Bump, and Bert Thoma. Zhigang Rong, Jeff Laster, Michael Buehrer, Keith Brafford, and Sandip Sandhu also provided useful suggestions and helpful reviews of early drafts. For the second edition, I also express my sincere gratitude to Hao Xu, Roger Skidmore, Paulo Cardieri, Greg Durgin, Kristen Funk, Ben Henty, Neal Patwari, and Aurelia Scharnhorst who have helped me greatly in preparing added material.

This text benefits greatly from practical input provided by several industry reviewers. Roman Zaputowycz of Bell Atlantic Mobile Systems, Mike Bamburak of McCaw Communications, David McKay of Ortel, Jihad Hermes of PrimeCo, Robert Rowe of Ariel Communications, William Gardner of Qualcomm, John Snapp of AT&T Wireless, and Jim Durcan of Comcast Cellular provided extremely valuable input as to what materials were most important, and how they could best be presented for students and practicing engineers. Marty Feuerstein of Metawave and Mike Lord of Cellular One provided comprehensive reviews which have greatly improved the manuscript. Larry Sakayama of Agilent Technologies, Professor Philip DiPiazza of Florida Institute

Preface

xxiii

of Technology, and Jeff Stosser of Triplecom, Inc. provided valuable reviews of the new material in the second edition. The technical staff at Wireless Valley Communications, Inc. also provided feedback and practical suggestions during the development of this text.

From the academic perspective, a number of faculty in the wireless communications field provided useful suggestions which I readily incorporated. These reviewers include Prof. J. Keith Townsend of North Carolina State University, Prof. William H. Tranter of Virginia Tech, and Prof. Thomas Robertazzi of State University of New York. Professors Jeffrey Reed and Brian Woerner of Virginia Tech also provided excellent recommendations from a teaching perspective. I am grateful for the invaluable contributions from all of these individuals. Also, I wish to thank the numerous faculty, students, and practicing engineers from around the world, who continue to provide me with valuable feedback and suggestions, and who are using this book in their classrooms, short courses, and everyday work life.

I am pleased to acknowledge the support of the National Science Foundation, the Defense Advanced Research Projects Agency, and the many sponsors and friends who have supported my research and educational activities in wireless communications since 1988. It is from the excellent faculty at Purdue University, particularly my advisor, the late Clare D. McGillem, that I formally learned about communications and how to build a research program. I consider myself fortunate to have been one of the many graduate students who was stimulated to pursue a dual career in engineering and education upon graduation from Purdue.

Finally, it is a pleasure to acknowledge the countless teachers and students who have used this book and have generously offered suggestions to improve it, as well as my original publisher, Bernard Goodwin of Prentice Hall, who commissioned this work at the dawn of the wireless communications era. I also wish to thank many of my recent graduate students, as well as Ryan Furio, and especially Dr. Jeffrey Stribling who provided a very detailed review that has improved this updated second edition. I feel fortunate to now be publishing this classic text with Cambridge University Press, with the strong support and encouragement from my publishers Elizabeth Horne, Amy Jacobsen and Julie Lancashire. I look forward to working on many more improvements, editions, and textbooks with them in the years to come.

Theodore S. Rappaport