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1 Introduction

1.1 The Aims of Statistical Mechanics

Statistical mechanics (SM) is the third pillar of modern physics, next to

quantum theory and relativity theory. Its aim is to account for the behaviour

of macroscopic systems in terms of the dynamical laws that govern their

microscopic constituents and probabilistic assumptions about them. The use

of probabilities is motivated by the fact that systems studied by SM have

a large number of microscopic constituents. Paradigmatic examples of sys-

tems studied in SM are gases, liquids, crystals, and magnets, which all have

a number of microscopic constituents that is of the order of Avogadro’s

number (6.022 × 1023).1

The focal point of SM is a particular aspect of the behaviour of macro-

systems, namely equilibrium. To introduce equilibrium, and to boost intu-

itions, let us consider a standard example. A gas is conûned to the left half of

a container with a dividing wall, as illustrated in Figure 1a. The gas is in

equilibrium in the sense that there is no manifest change in any of its macro

properties like pressure, temperature, and volume, and the gas will have these

macro properties so long as the container remains unchanged. Now consider

such a change: remove the dividing wall in the middle, as illustrated in

Figure 1b. The gas is now no longer in equilibrium because it does not ûll

the container evenly. As a result, the gas starts spreading through the entire

available volume, as illustrated in Figure 1c. The spreading of the gas comes to

an end when the entire container is ûlled evenly and no further change takes

place, as illustrated in Figure 1d. At this point, the gas has reached a new

equilibrium. Since the process of spreading culminates in a new equilibrium,

this process is an approach to equilibrium. A key characteristic of the

approach to equilibrium is that it seems to be irreversible: systems move

from non-equilibrium to equilibrium, but not vice versa: gases spread to ûll

the container evenly, but they do not spontaneously concentrate in the left half

of the container. Since an irreversible approach to equilibrium is often associ-

ated with thermodynamics, this is referred to as thermodynamic behaviour.2

1 From now on, we will use ‘micro’ and ‘macro’ as synonyms for ‘microscopic’ and ‘macroscopic’,

and we will speak of macro systems and their micro constituents, as well as of macro or micro

properties, macro or micro characterisations, and so on. We will also use ‘micro-states’ and

‘macro-states’, where we add the hyphen to indicate that they are unbreakable technical terms.We

use ‘SM systems’ as a shorthand for ‘the systems studied in SM’.
2 This is commonly seen as a result of the second law of thermodynamics. However, as Brown and

Ufûnk (2001) note, the irreversibility of the kind illustrated in our example is not part of

the second law and has to be added as an independent principle to the theory, which they call

the minus-ûrst law.
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Characterising the state of equilibrium and accounting for why, and how,

a system approaches equilibrium are the core tasks for SM. Sometimes these

two problems are assigned to separate parts of SM, namely equilibrium SM

and non-equilibrium SM.

What does characterising the state of equilibrium involve? We said that the

gas is in equilibrium when there is no manifest change in any of its macro

properties. This is a valid macro characterisation. Yet if the aim of SM is to

account for the macro properties of a system in terms of the behaviour of its

micro constituents, then we need a characterisation of equilibrium in micro-

physical terms: what condition does the motion of the molecules in a gas have to

satisfy for the gas to be in equilibrium? And how do the values of macroscopic

properties like local pressure and local temperature depend on the state of

motion of gas molecules? Equilibrium SMprovides answers to these and related

questions.

Turning to non-equilibrium, the core question is how the tendency of systems

to move to equilibrium when prepared in a non-equilibrium state is grounded

in the dynamics of the micro constituents of the system: what is it about the

motions of molecules that leads them to spread so that the gas assumes a new

equilibrium state when the shutter is removed? And, crucially, what accounts

for the fact that the reverse process does not happen?

Figure 1 The spreading of gas when removing a shutter.
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This Element focuses on these questions. This, however, is not to say that SM

deals solely with equilibrium.While equilibrium occupies centre stage, SM also

addresses other issues such as phase transitions, the entropy costs of computa-

tion, and the process of mixing substances; and in philosophical contexts SM

has been employed to shed light on issues like the direction of time and the

possibility of knowledge about the past. Space constraints prevent us from

delving into these issues, and we will concentrate on equilibrium.

1.2 The Theoretical Landscape of SM

Foundational debates in many other areas of physics can take as their point of

departure a generally accepted formalism and a clear understanding of what the

theory is. A discussion of the nature of space and time, for instance, can base its

considerations on the general theory of relativity, and a discussion of the

foundations of quantum mechanics has the formalism of the theory as reference

point. The situation in SM is different because, unlike quantum mechanics and

relativity theory, SM has not yet found a generally accepted theoretical frame-

work, let alone a canonical formulation. Those delving into SM ûnd a multitude

of different approaches and schools of thought, each with its own conceptual

apparatus and formal structure.3 A discussion of the foundations of SM can

therefore not simply begin with a concise statement of the formalism of SM

and its basic principles. Indeed, the choice, articulation, and justiûcation of

a theoretical framework for SM is an integral part of the foundational endeavour!

It has become customary in the foundations of SM to organise most (although

not all) theoretical approaches in SM under one of two broad theoretical

umbrellas. These umbrellas are known as Boltzmannian SM (BSM) and

Gibbsian SM (GSM) because their core principles are attributed to Ludwig

Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903) respectively.

Accordingly, approaches are then classiûed as ‘Boltzmannian’ or ‘Gibbsian’.4

In this Element, we follow this classiûcatory convention and use it to structure

our discussion. We note, however, that from a historical point of view, this

labelling is not entirely felicitous. While Boltzmann did indeed champion the

approach now known as BSM, his work was in no way restricted to it.

3 For reviews of these approaches see Frigg (2008b), Penrose (1970), Shenker (2017a, 2017b),

Sklar (1993), and Ufûnk (2007).
4 There is an interesting historical question about the origin and subsequent evolution of this

schism. We cannot discuss this question here, but we speculate that it goes back to Ehrenfest

and Ehrenfest-Afanassjewa’s seminal review (1912/1959). While they do not use the labels BSM

and GSM, they clearly separate a discussion of Boltzmann’s ideas, which they discuss under the

heading of ‘The Modern Formulation of Statistico-Mechanical Investigations’, and Gibbs’

contributions, which they discuss in a section entitled ‘W. Gibbs’s Elementary Principles in

Statistical Mechanics’.
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Boltzmann in fact explored many different theoretical avenues, among them

also ensemble methods that are now classiûed as Gibbsian. So ‘BSM’ is a

neologism that should not be taken to be an accurate reûection of the scope of

Boltzmann’s own work.5

1.3 Outline

In this Element we discuss how BSM and GSM deal with the questions

introduced in Section 1.1. Both BSM and GSM are formulated against the

background of dynamical systems theory and probability theory. In Section 2

we introduce the basic concepts of both theories and state results that are

important in the context of SM. In Section 3 we turn to BSM. We start by

introducing the core concepts of BSM and then discuss different ways of

developing them. Section 4 is dedicated to GSM. After introducing the formal-

ism, we discuss its interpretation and different developments, and we end by

considering the relation between BSM and GSM.

It goes without saying that omissions are inevitable. Some of them we have

already announced in Section 1.1: we focus on equilibrium and the approach

to it, and we set aside topics like phase transitions and the entropy costs of

computation, and we will only brieûy touch on questions concerning

reductionism.6 In addition to these, we set aside approaches to SM that do not

clearly fall under the umbrella of either BSM or GSM, which implies that we do

not discuss the Boltzmann equation.7

2 Mechanics and Probability

As the name ‘statistical mechanics’ indicates, SM aims to give an account of the

behaviour of systems in terms of mechanics and statistics. The use of the word

‘statistics’ in this context is, however, out of sync with its modern use, where the

term usually means something like ‘the technology of extracting meaning from

data’ (Hand 2008, 1). As a branch of theoretical physics, SM is not concerned

with the collection and interpretation of data (although data are of course

important in testing the theory). In the second half of the nineteenth century,

when the foundations of the discipline were laid, one of the main uses of the

term ‘statistics’ was also to designate a ‘description of the properties or behav-

iour of a collection of many atoms, molecules, and so on, based on the applica-

tion of probability theory’ (OED ‘statistics’). So a ‘statistical’ treatment of

5 For an overview of Boltzmann’s contributions to SM see Ufûnk (2022); for detailed discussions

see, for instance, Brush (1976), Cercignani (1998), Darrigol (2018), and Ufûnk (2007).
6 For recent discussions of reduction with special focus on statistical mechanics, see Batterman

(2002), Butterûeld (2011a, 2011b), Lavis, Kühn, and Frigg (2021), and Palacios (2022).
7 For a discussion of the Boltzmann equation, see Ufûnk (2007).
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a problem is simply a treatment in terms of probability theory. This use of

‘statistics’ has become less common, and hence ‘probabilistic mechanics’might

better describe the discipline to a modern reader. But, for better or worse,

historical labels stick. What this short excursion into the etymology of ‘statis-

tical mechanics’ brings home is that the theory builds on two other disciplines,

namely mechanics and probability, which provide its background theories.

The aim of this section is to introduce these background theories. The

mechanical background theory against which SM is formulated can be either

classical mechanics or quantum mechanics, resulting in either classical SM or

quantum SM. Foundational debates are by and large conducted in the context of

classical SM. We follow this practice in this Element, and for this reason the

current section focuses on classical mechanics.8

The section is structured as follows. We begin by introducing dynamical

systems at a general level, along with some basic mechanical notions like

trajectory, measure, and determinism (Section 2.1). We then have a closer

look at a speciûc class of dynamical systems, Hamiltonian systems, which are

important in this context because they provide the fundamental structure of SM

systems (Section 2.2). Hamiltonian systems have two dynamical properties that

feature prominently in discussions about SM, namely time-reversal invariance

(Section 2.3) and Poincaré recurrence (Section 2.4). Being ergodic is a property

that certain time evolutions possess. This property plays an important role in

SM because different approaches appeal to it to justify the equilibrium behav-

iour of SM systems (Section 2.5). This brings our discussion of mechanics to

a conclusion, and we turn to probability. We introduce the basic formalism of

probability theory and discuss the three main philosophical interpretations of

probability (Section 2.6).

2.1 Dynamical Systems

At the level of theirmicro constituents, SM systems have the structure of a so-called

dynamical system, a triple ðX ; �t; ¿Þ.
9 This is illustrated in Figure 2. Here, X is

the state space of the system: it contains all states that, the system could possibly

assume. In classical mechanics, the state of motion of an object (understood as a

point particle) is completely speciûed by saying what its position and momen-

tum are. If a system consists of several objects, the state of motion of the system

is speciûed by saying what the positions and the momenta of all its objects are.

Molecules move in three-dimensional physical space, and so a molecule has

8 For a discussion of foundational issues in quantum SM see, for instance, Emch (2007).
9 Our characterisation of a dynamical system is intuitive. For mathematical discussions see, for

instance, Arnold and Avez (1968) and Katok and Hasselblatt (1995).
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three degrees of freedom. This means that a speciûcation of the position of the

molecule requires three parameters, one for each spatial direction. Since the

molecule has a momentum in each direction, a further three parameters are

needed to specify its momentum. So we need six parameters to specify the state

of motion of a molecule. Accordingly, the speciûcation of the state of the entire

gas with n molecules requires 6n parameters. Hence, X is a 6n-dimensional

space containing the positions and momenta of all molecules.

The second element of a dynamical system, �t, is the time evolution function.

This function speciûes how the state of a system changes over time, and we write

�tðxÞ to denote the state into which an initial state x evolves after time t. If the

time evolution is speciûed by equations of motion like Newton’s, Lagrange’s, or

Hamilton’s, then �tðxÞ is the solution of that equation (we discuss Hamilton’s

equations in more detail in the next section). As time passes, �tðxÞ draws a ‘line’

through X that represents the time evolution of a system that was initially in

state x; this ‘line’ is called a trajectory. This is illustrated in Figure 1.

The third element of a dynamical system, ¿, is a measure on X. At a general

level, a measure is a device to attribute a size to an object. Familiar examples are

the attribution of a length to a segment of a line, a surface to a part of a plane, and

a volume to a portion of space. From amathematical point of view X is a set, and

the measure ¿ attributes a ‘size’ – or ‘measure’ – to subsets of X in much the

same way in which a ruler attributes a length to, say, a pencil. If the measure ¿ is

able to attribute a size to a particular subset A⊆X , then A is said to be

measurable. In what follows we assume that all sets are measurable. If

a measure is such that ¿ðX Þ ¼ 1, then the measure is normalised.

Things can be measured in different ways. One measure is of particular

importance in the current context: the so-called uniform Lebesgue measure.

This measure is a mathematically precise rendering of the measure we use when

attributing lengths and surfaces to objects. For instance, the interval [2, 5] has

uniform Lebesgue measure (or length) 3, and a circle with radius r has uniform

Lebesgue measure (or surface) of Ãr2.

Figure 2 A dynamical system and a subset A⊆X .
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The time evolution �t is deterministic. It is common to deûne determinism in

terms of possible worlds (Earman 1986, 13). LetW be the class of all physically

possible worlds. The world w 2 W is deterministic if and only if for anyworld

w’ 2 W it is the case that: if w and w’ are in the same state at some time t0, then

they are in the same state at all times t. This deûnition can be restricted to an

isolated subsystem s of w. Consider the subset world Ws⊆W of all possible

worlds which contain an isolated counterpart of s, and let s’ be the isolated

counterpart of s in w’. Then s is deterministic if and only if for any world

w’ 2 Ws it is the case that if s and s’ are in the same state at some time t0, then

they are in the same state at all times t. The system s can be a dynamical system

of the kind we have just introduced. Determinism then implies that every state x

has exactly one past and exactly one future, or, in geometrical terms, trajectories

cannot intersect (neither themselves nor other trajectories).

2.2 Hamiltonian Mechanics

The notion of a dynamical system introduced in the previous section is

extremely general, and more structure must be added to make it useful for the

treatment of SM systems. The structure that is usually added is that of

Hamiltonian mechanics.10

In Hamiltonian mechanics, the state of an object is described by its position

q and its momentum p. In fact, there is a q-and-p pair for every degree of

freedom. Hence, for a gas with n molecules moving in the three-dimensional

physical space there are 3n q-and-p pairs. The 3n pairs constitute the state space

X of the system, which in this context is often referred to as phase space (and

since having 3n pairs means having 6n variables, the phase space has

6n dimensions as noted previously).

The Hamiltonian equations of motion are

_qk ¼
∂H

∂pk
and _p

k
¼ "

∂H

∂qk
;

where the dot indicates a derivative with respect to time and the index k ranges

over all degrees of freedom (so, for a gas we have k = 1, . . ., 3n). This deûnes

a system of k differential equations, and the solution to this equation is the time

evolution function �t of the system. Solving these equations for SM systems is

usually a practical impossibility, and so we will not be able to write down �t

explicitly. This does not render Hamiltonian mechanics useless. In fact, the

equations ensure that �t has a number of general features, and these can be

10 For a brief introduction see, for instance, Argyris, Faust, and Haase (1994, ch. 4).
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established even if �t is not explicitly known. In the remainder of this section we

review some of the features that are central to SM.

The Hamiltonian equations contain the function H, which is called the

Hamiltonian of the system. The Hamiltonian H is the energy function of

the system, which, in general, depends on all coordinates qk and pk . So, the

Hamiltonian equations of motion specify how a system evolves in time based on

the energy function of the system. If the energy of the system does not explicitly

depend on time (which is the case, for instance, if a system is not driven by

outside inûuences like pushes or kicks), then the system is autonomous. In an

autonomous system, H is a conserved quantity (or a ‘constant of motion’),

meaning that it does not change over the course of time. This has the immediate

consequence that any function f ðHÞ is a conserved quantity too.

The gas that we used as our introductory example is an autonomous system: it

is isolated from the environment through the box and once the shutter has been

removed, it is not subject to any outside disturbances. The gas is no exception,

and typical systems in SM are autonomous Hamiltonian systems. The fact that

the energy is conserved has an important consequence. Once the energy of the

system is ûxed to have a certain value E, the conservation of energy means that

H ¼ Emust hold all the time.H is a function of the coordinates qk and pk , which

means that it deûnes a hypersurface XE in X. This surface has one dimension

fewer than X itself. In the case of the gas, it is therefore 6n – 1 dimensional. This

surface is known as the energy hypersurface.11 SinceH ¼ E holds at all times, it

follows that the motion of the system is conûned to the energy hypersurface:

trajectories that start in an initial condition x in the energy hypersurface will

never leave the hypersurface.

The total energy of the system may not be the only conserved quantity.

Depending on the nature of the system, other quantities may be conserved

too. From a formal point of view, each conserved quantity is a function Q of

the coordinates qk and pk for which Q ¼ C holds for all times, where C is the

value that Q assumes. In geometric terms, each conserved quantity deûnes

a hypersurface to which trajectories remain conûned. Such surfaces are also

called invariant hypersurfaces. The crucial aspect (and this will be important

later on) is that these hypersurfaces divide the phase space into regions that are

‘disconnected’ in the sense that trajectories cannot penetrate the surface to get to

the other side. This is schematically illustrated in Figure 3, where we see an

invariant surface and three trajectories. While Trajectory 1 and Trajectory 2 are

11 It is a hypersurface because ‘surface’ has the connotation of being two-dimensional, like

a tabletop, which the surface of constant energy is not.
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