

MODULAR FORMS AND STRING THEORY

An indispensable resource for readers in physics and mathematics seeking a solid grasp of the mathematical tools shaping modern theoretical physics, this book comprises a practical introduction to the mathematical theory of modular forms and their application to the physics of string theory and supersymmetric Yang–Mills theory.

Suitable for adventurous undergraduates, motivated graduate students, and researchers wishing to navigate the intersection of cutting-edge research in physics and mathematics, it guides readers from the theory of elliptic functions to the fascinating mathematical world of modular forms, congruence subgroups, Hecke theory, and more. Having established a solid basis, the book proceeds to numerous applications in physics, with only minimal prior knowledge assumed. Appendixes review foundational topics, making the text accessible to a broad audience, along with exercises and detailed solutions that provide opportunities for practice. After working through the book, readers will be equipped to carry out research in the field.

ERIC D'HOKER obtained his PhD in physics from Princeton University and is currently Distinguished Professor of Theoretical and Mathematical Physics at the University of California, Los Angeles (UCLA) and a fellow of the American Physical Society. He was previously a Simons fellow, a Dyson Distinguished Visiting Professor at Princeton's Institute for Advanced Study, and has served as President of the Aspen Center for Physics.

JUSTIN KAIDI obtained his PhD in physics from UCLA. After two years as a research assistant professor at the Simons Center for Geometry and Physics at Stony Brook University, he joined the University of Washington as an assistant professor. He is currently an associate professor at the Institute for Advanced Study and Department of Physics at Kyushu University.

MODULAR FORMS AND STRING THEORY

ERIC D'HOKER

University of California, Los Angeles

JUSTIN KAIDI

Kyushu University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

 $www.cambridge.org \\ Information on this title: www.cambridge.org/9781009457538$

DOI: 10.1017/9781009457521

© Eric D'Hoker and Justin Kaidi 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009457521

First published 2025

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-45753-8 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Jody

Contents

	$Organization \ Acknowledgments$			ge xvi xvii	
1		Introduction			
	Par	t I Ma	odular forms and their variants	7	
2		ptic fun		9	
4	2.1	•	ic functions of a real variable	9	
	2.1	2.1.1	Unfolding and Poisson resummation formulas	10	
		2.1.2	Application to analytic continuation	11	
	2.2		ic functions of a complex variable	13	
		2.2.1	Application to calculating $\zeta(s)$ at special values	15	
	2.3				
		2.3.1	Construction by the method of images	18	
	2.4	The W	eierstrass elliptic function	19	
		2.4.1	The field of elliptic functions in terms of \wp and \wp'	19	
		2.4.2	The discriminant and the roots of the cubic	21	
		2.4.3	The Weierstrass ζ -function	22	
		2.4.4	Rescaling the periods	23	
	2.5	Jacobi	elliptic functions	23	
	2.6 Jacobi ϑ -functions		ϑ -functions	25	
		2.6.1	The number of zeros of ϑ	26	
		2.6.2	ϑ -functions with characteristics	27	
		2.6.3	The Riemann relations for Jacobi ϑ -functions	28	
		2.6.4	Elliptic functions from their zeros and poles	29	
	$^{2.7}$	Uniform	mization of cubics and quartics	31	

viii		Contents			
	2.8	Elliptic curves	32		
		2.8.1 Embedding into \mathbb{CP}^2	32		
	2.9	Addition formulas and group structure of elliptic curves	34		
	2.10				
		2.10.1 Perspective of the torus \mathbb{C}/Λ	36		
		2.10.2 Perspective of the elliptic curve \mathcal{E}	37		
	2.11	Abelian and elliptic integrals	39		
		2.11.1 Abelian integrals of the first kind	39		
		2.11.2 Abelian integrals of the second kind	40		
		2.11.3 Abelian integrals of the third kind	40		
	Exer	rcises	42		
3	Mod	dular forms for $\mathrm{SL}(2,\mathbb{Z})$	43		
	3.1	Automorphisms of lattices and the modular group	43		
		3.1.1 Structure of the modular group	44		
	3.2	The fundamental domain for $SL(2,\mathbb{Z})$	45		
		3.2.1 The Poincaré upper half plane	45		
		3.2.2 The fundamental domain for $SL(2, \mathbb{Z})$	46		
		3.2.3 Elliptic points	48		
		3.2.4 Cusps	49		
	3.3	Modular functions, modular forms, and cusp forms	49		
		3.3.1 Comments on terminology and differential forms	50		
		3.3.2 The ring of modular forms	52		
	3.4	Eisenstein series	52		
		3.4.1 Fourier decomposition of Eisenstein series	53		
		3.4.2 Poincaré series representation	55		
		3.4.3 The polynomial ring of Eisenstein series	56		
	3.5				
		3.5.1 Dimension and generators of \mathcal{M}_k and \mathcal{S}_k	60		
	3.6	Modular functions and the j -function	61		
		3.6.1 The j -functions and moonshine	62		
		3.6.2 Classification of modular functions	62		
		3.6.3 Modular forms with prescribed zeros	63		
	3.7	Modular transformations of Jacobi ϑ -functions	64		
		3.7.1 The discriminant Δ in terms of ϑ -constants	65		
		3.7.2 Sums and products of eighth powers	67 68		
	3.8	,			
	Exer	rcises	70		
4	Vari	iants of modular forms	71		
	4.1	Quasi-modular and almost-holomorphic modular forms	71		

			Contents	ix
		4.1.1	E_2 and E_2^*	71
		4.1.2	Ring structure	74
		4.1.3		74
	4.2	Non-ho	plomorphic Eisenstein series	76
		4.2.1	Analytic continuation of $E_s(\tau)$	77
		4.2.2	Fourier series of $E_s(\tau)$	78
	4.3	Maass	forms	80
		4.3.1	The space of Maass forms	82
		4.3.2	Cusp forms	83
		4.3.3	Physical interpretation of the spectrum	85
	4.4	Spectra	al decomposition	85
	4.5	Maass	forms of arbitrary weight	87
	4.6	Mock r	modular forms	88
		4.6.1	Examples of mock modular forms	89
	4.7	Quantı	um modular forms	92
	Exe	rcises		94
5	Qua	antum fi	ields on a torus	95
	5.1	Quantı	um fields	95
		5.1.1	Conformal fields	96
		5.1.2	Free conformal fields	97
	5.2	The bc	system	98
		5.2.1	The bc system on an annulus	98
		5.2.2	The operator product expansion	99
	5.3	Correla	ators of the bc system on the torus	101
		5.3.1	The 4-point correlator	102
		5.3.2	Arbitrary correlators	103
	5.4	The sca	alar field	103
	5.5	The sca	alar Green function on the torus	105
		5.5.1	The Laplacian on the torus	106
		5.5.2	The scalar Green function via Fourier series	107
		5.5.3	The scalar Green function via ϑ -functions	108
		5.5.4	Modular properties	109
	5.6	Scalar	determinant and Kronecker's first limit formula	110
		5.6.1	The first Kronecker limit formula	111
		5.6.2	The scalar partition function	111
	5.7	Spinor		112
		5.7.1	Spinor fields on the annulus	113
		5.7.2	Spinor fields on the torus	113
	5.8	Spinor	Green functions on the torus	114

X			Contents		
		5.8.1	Odd spin structure	115	
		5.8.2	Even spin structure via Fourier analysis	115	
		5.8.3	Even spin structure via ϑ -functions	116	
	5.9	Spinor	determinant and Kronecker's second limit formula	117	
	Exe	cises		120	
6	Con	gruence	e subgroups and modular curves	121	
	6.1	Definiti	ion of congruence subgroups of $\mathrm{SL}(2,\mathbb{Z})$	121	
	6.2	The cla	ssic congruence subgroups	122	
	6.3	Compu	ting the order of $\mathrm{SL}(2,\mathbb{Z}_N)$	123	
	6.4	Modula	ar curves	125	
		6.4.1	Fundamental domain for a congruence		
			subgroup Γ	125	
		6.4.2	The example of $\Gamma(2)$	126	
	6.5	Compa	ctification of the modular curves	127	
	6.6	The gen	nus of $X(\Gamma)$	129	
		6.6.1	The Hurwitz formula for branched coverings	129	
		6.6.2	Calculating the genus of $X(\Gamma)$	129	
	6.7 Formulas for d , ε_2 , ε_3 , and ε_∞ for $\Gamma(N)$, $\Gamma_1(N)$, and				
		$\Gamma_0(N)$		130	
		6.7.1	The degree	131	
		6.7.2	The absence of elliptic points	131	
		6.7.3	Counting elliptic points for $\Gamma_0(N)$	132	
		6.7.4	Counting the number of cusps	133	
	6.8	1 1			
	Exe	cises		136	
7	Mo	dular fo	rms for congruence subgroups	137	
	7.1	Modula	ar forms and cusp forms with respect to Γ	137	
	7.2	Dimens	sion formulas for modular forms	138	
		7.2.1	Modular forms of even weight, $k \geq 2$	139	
		7.2.2	Modular forms of odd weight, $k \geq 1$	140	
	7.3	The fie	lds of modular functions on $X(\Gamma)$	142	
	7.4	Holomo	orphic Eisenstein series for $\Gamma(N)$	142	
		7.4.1	Invariance under $\Gamma(N)$	144	
		7.4.2	Asymptotics near the cusps	144	
	7.5	Fourier	decomposition of Eisenstein series for $\Gamma(N)$	145	
	7.6	Holomo	orphic Eisenstein series for $\Gamma_0(N)$: a first look	146	
	7.7	Holomo	orphic Eisenstein series for $\Gamma_1(N)$ and $\Gamma_0(N)$	147	
		7.7.1	The rings of modular forms for congruence		
			subgroups	149	

		Contents	X			
		7.7.2 SageMath	150			
	7.8	Jacobi's theorem on sums of four and eight squares	150			
	Exer	rcises	153			
8	Mod	dular derivatives and vector-valued modular forms	155			
	8.1	Modular covariant derivatives	155			
	8.2	Modular differential equations	156			
		8.2.1 First-order MDE	156			
		8.2.2 Second-order MDE	157			
		8.2.3 Third-order MDE	158			
		8.2.4 Example	159			
		8.2.5 Modular invariance of solution spaces	160			
	8.3	Vector-valued modular forms	160			
		8.3.1 Examples	160			
		8.3.2 Integrality and $\Gamma(N)$	163			
		8.3.3 Relation to modular differential equations	164			
	Exer	rcises	166			
9	Modular graph functions and forms					
	9.1	Non-holomorphic modular forms of arbitrary weight	168			
	9.2	One-loop modular graph functions are Eisenstein series	169			
	9.3	Maass operators and Laplacians	170			
	9.4	Two-loop modular graph functions	172			
	9.5	General modular graph functions and forms	175			
		9.5.1 Modular properties	176			
		9.5.2 Examples: Eisenstein series and dihedral graphs	177			
		9.5.3 Examples: holomorphic modular graph forms	177			
		9.5.4 Algebraic relations	178			
		9.5.5 Differential relations	178			
		9.5.6 Higher loop algebraic relations	179			
	9.6	Relating modular graph functions to holomorphic forms	179			
	9.7	Modular graph functions and iterated modular integrals	182			
	Exer	rcises	186			
	Part	t II Extensions and applications	187			
10	Hec	ke operators	189			
	10.1	Definition of Hecke operators	189			
	10.2		191			
	10.3	Hecke operators map \mathcal{M}_k to \mathcal{M}_k	192			
	10.4	Fourier expansions	193			

XII		Contents		
	10.5	Example: the Ramanujan tau function	194	
	10.6	Multiplicative properties of Hecke operators	195	
	10.7	Hecke eigenforms	196	
		10.7.1 Petersson inner product	197	
	10.8	Hecke operators acting on Maass forms	198	
	10.9	Hecke operators on vector-valued modular forms	200	
	10.10	Further physics applications	201	
	Exer	cises	207	
11	Sing	gular moduli and complex multiplication	208	
	_	Conditions for complex multiplication	209	
	11.2	Elliptic functions at complex multiplication points	209	
	11.3	Examples	210	
		11.3.1 Heegner points	211	
	11.4	$j(\tau)$ as an algebraic integer	212	
		11.4.1 The examples of $n = 2, 3, 4, 5$	215	
		11.4.2 $j(\tau)$ as a rational integer	216	
	11.5	ϑ -functions at complex multiplication points	217	
		11.5.1 The point $\tau = i$	217	
		11.5.2 The point $\tau = 2i$	218	
		11.5.3 The point $\tau = \sqrt{2}i$	219	
		11.5.4 The points $\tau = in$ and $\tau = i/n$ with $n \in \mathbb{N}$	219	
	11.6	The values of $E_2,E_4,\mathrm{and}E_6$ at the points $\tau=i,\rho$	220	
	Exer	cises	221	
12	Stri	ng amplitudes	223	
	12.1	Overview	223	
	12.2	The Polyakov formulation	225	
	12.3	String amplitudes as integrals over moduli space	228	
	12.4	Conformal invariance and decoupling negative norm		
		states	230	
	12.5	String amplitudes in terms of vertex operators	233	
	12.6	Superstring amplitudes	235	
		12.6.1 The Arakelov–Green function	237	
		12.6.2 Physical singularity structure of amplitudes	238	
	12.7		239	
	12.8	Effective interactions from the four-graviton amplitude	240	
		12.8.1 Low-energy expansion at tree level	241	
		12.8.2 Transcendental weight	241	
		Genus one in terms of modular graph functions	242 244	
	12.10 Genus two in terms of modular graph functions			

			Contents	xiii	
		12.10.1	Contributions to low weight	245	
	12.11 Integration over the genus-one moduli space				
		12.11.1	Partitioning the genus-one moduli space	247	
			Integrals involving Eisenstein series	248	
		12.11.3	The nonanalytic contribution $\mathcal{A}_{R}^{(1)}$	249	
			The analytic contribution $\mathcal{A}_L^{(1)}$	251	
			Assembling analytic and nonanalytic parts	251	
	12.12	2 Integrat	tion over the genus-two moduli space	252	
	12.13	The Sel	berg trace formula and functional determinants	253	
	Exer	cises		258	
13	Toro	oidal con	mpactification	259	
	13.1	Conform	nal field theory on flat manifolds	259	
	13.2	Lattices	s and tori of dimension d	260	
	13.3	Fields t	aking values in a torus	261	
	13.4	T-duali	ty on a circle	262	
	13.5	T-duali	ty on a torus \mathbb{T}^d	265	
		13.5.1	A first look at T-duality	265	
		13.5.2	Holomorphic block decomposition	267	
		13.5.3	T-duality in terms of the lattice	267	
	13.6	Rationa	ality and complex multiplication	270	
		13.6.1	The case \mathbb{T}^1	270	
		13.6.2	The case \mathbb{T}^2	271	
	Exer	cises		272	
14	S-du	ality of	Type IIB superstrings	274	
	14.1	Type II	B supergravity	274	
		14.1.1	Fields of Type IIB supergravity	275	
		14.1.2	Field equations of Type IIB supergravity	276	
	14.2		$(2,\mathbb{R})$ symmetry of classical Type IIB supergravity	277	
	14.3) to $\mathrm{SL}(2,\mathbb{Z})$ via an anomaly mechanism	278	
	14.4) to $SL(2,\mathbb{Z})$ via the Dirac quantization condition	281	
	14.5		ergy effective interactions	282	
	14.6) duality in Type IIB superstring theory	284	
	14.7		ein series from supersymmetry and S-duality	285	
		14.7.1	Non-renormalization theorems	290	
	Exer	cises		292	
15	Dua		$\mathcal{N}=2$ super Yang–Mills theories	294	
	15.1	-	Yang-Mills: states and fields	294	
		15.1.1	States	295	
		15.1.2	Fields	296	

XIV		Contents		
	15.2	Super Yang–Mills: Lagrangians	298	
		15.2.1 $\mathcal{N} = 1$ Lagrangians	299	
		15.2.2 Renormalizable $\mathcal{N} = 2$ Lagrangians	299	
	15.3	Low-energy Lagrangian on the Coulomb branch	301	
	15.4	BPS states, monopoles, and dyons		
	15.5	$\mathrm{SL}(2,\mathbb{Z})$ -duality of the $\mathcal{N}=4$ theory	304	
		15.5.1 The global structure of $\mathcal{N}=4$ theories	305	
		15.5.2 Example: $\mathfrak{su}(2)$ SYM	309	
		15.5.3 $SL(2,\mathbb{Z})$ on line operators	310	
	15.6	The Seiberg-Witten solution	311	
		15.6.1 The $N_f < 2N$ theory for gauge group $SU(N)$	312	
	15.7	The $\mathcal{N}=2^*$ theory for gauge group $\mathrm{SU}(N)$	313	
		15.7.1 The Seiberg–Witten solution	313	
		15.7.2 The Seiberg–Witten curve	314	
		15.7.3 The vacuum expectation values	315	
	15.8	The $\mathcal{N}=2^*$ theory for gauge group $\mathrm{SU}(2)$	316	
		15.8.1 Expansion in powers of the mass m	317	
		15.8.2 Low orders and perturbative contribution	318	
		15.8.3 Modular properties	319	
		Linear quiver chains from a limit of $\mathcal{N}=2^*$	320	
	15.10	$\mathcal{N}=2$ dualities	321	
		15.10.1 Conformal symmetry	322	
		15.10.2 Superconformal symmetry	323	
		15.10.3 Superconformal field theories	324	
		15.10.4 SU(2) quivers and Riemann surfaces	326	
	Exercises			
16	Basic Galois theory			
	16.1	Fields	332	
	16.2	Field extensions	333	
		16.2.1 Simple extensions	334	
		16.2.2 Splitting fields	334	
		16.2.3 Normal extensions	335	
	16.3	Field automorphisms and the Galois group	335	
		16.3.1 Intermediate fields	337	
	16.4	The fundamental theorem of Galois theory		
	16.5	Solvability by radicals		
	16.6	Cyclotomic fields and Abelian extensions	341	
	16.7	Galois theory in rational conformal field theory	342	
	Exercises			

Contents	XV
Part III Appendix	345
Appendix A Some arithmetic	347
A.1 Arithmetic mod N	347
A.2 Chinese remainder theorem	348
A.3 Solving polynomial equations	348
A.4 Quadratic residues and quadratic	residue symbols 350
A.5 Gauss sums	354
A.6 Quadratic reciprocity	355
A.7 Characters	355
A.8 Dirichlet characters	356
A.9 Dirichlet L -functions	357
Appendix B Riemann surfaces	362
B.1 Topology	362
B.2 Metrics and complex structures	367
B.3 Uniformization	370
B.4 Fuchsian groups	373
B.5 Construction of Riemann surfaces	via Fuchsian groups 374
$Appendix \ C \ \ {\rm Line\ bundles\ on\ Riemann}$	surfaces 378
C.1 Holomorphic line bundles on a Rie	emann surface 378
C.2 Holomorphic sections and the Rien	mann–Roch theorem 382
C.3 Vanishing theorem and dimension	formulas 383
C.4 Tensors and spinors on Σ	385
C.5 Proof of the Riemann–Roch theore	em 387
C.6 Proof of the vanishing theorem	387
C.7 The dimension of moduli space	388
Appendix D Riemann ϑ -functions and u	meromorphic forms 391
D.1 The Siegel half-space	391
D.2 The Riemann theta function	392
D.3 Jacobian, Abel map, and Riemann	_
D.4 The prime form	396
D.5 Holomorphic differentials	396
D.6 Meromorphic differentials	397
D.7 The bc system	399
Appendix E Solutions to exercises	403
References	455
Index	477

Organization

This book is organized into three parts. Each part is preceded by a one-page organizational summary.

Part I provides an introduction to elliptic functions and modular forms and to variants such as quasi-modular forms, almost-holomorphic modular forms, non-holomorphic modular forms, mock modular forms, and quantum modular forms. Full chapters are dedicated to modular forms for congruence subgroups, vector-valued modular forms, and modular graph functions.

Part II provides various mathematical extensions and physical applications of the material of Part I. The mathematical extensions include Hecke operators, complex multiplication, and Galois theory. The physical applications include string amplitudes, T-duality of toroidal compactifications of string theories, S-duality in Type IIB string theory, dualities in Yang–Mills theories with extended supersymmetry, Seiberg–Witten theory, and two-dimensional conformal field theory.

Part III contains four appendixes of material that is central to the core chapters but may be read independently thereof, including introductions to modular arithmetic, the topology and geometry of Riemann surfaces, line bundles on Riemann surfaces, and higher rank ϑ -functions on higher-genus Riemann surfaces. A fifth appendix provides solutions to the Exercises that are formulated at the end of each one of Chapters 2–16.

Bibliographical notes are provided at the end of each chapter and appendix. For mathematics references, many excellent textbooks are available on elliptic functions, modular forms, Riemann surfaces, and Galois theory. For physics references, we shall refer as much as possible to textbooks, review papers, and lecture notes that we find useful and to research papers whenever the material is not readily available otherwise.

Acknowledgments

Eric is indebted to Michael Green, Boris Pioline, Oliver Schlotterer, and especially to Duong Phong for productive and enjoyable collaborations on subjects closely related to this book over the span of many years. Four decades of financial support from the National Science Foundation, as well as a Simons Foundation Fellowship are gratefully acknowledged. Last, but by no means least, this book is dedicated to his wife Jody Enders, whose love and brilliance serve as a never-ending inspiration.

Justin thanks Jan Albert, Ying-Hsuan Lin, Kantaro Ohmori, Julio Parra-Martinez, Eric Perlmutter, Yuji Tachikawa, Gabi Zafrir, and Yunqin Zheng for fruitful collaborations on topics closely related to the content of this book, which in particular influenced several of the chapters in Part II. He also thanks the Simons Center for Geometry and Physics, the Kavli Institute for Physics and Mathematics of the Universe, the University of Washington, Kyushu University, the US Department of Energy, and the Inamori Foundation for support during the writing of this text.

Both authors wish to express their gratitude to their colleagues Zvi Bern, Thomas Dumitrescu, Michael Gutperle, Per Kraus, Julio Parra-Martinez, Mikhail Solon, and Terry Tomboulis for the stimulating intellectual atmosphere at the Mani L. Bhaumik Institute for Theoretical physics, where part of this book was written, and to Dr. Mani Bhaumik for making it all possible.

Finally, they are happy to thank Nicholas Gibbons, Stephanie Windows and Jane Chan of Cambridge University Press for their help during the publication process.