

AN INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY

Experts Plebański and Krasiński provide a thorough introduction to the tools of general relativity and relativistic cosmology. Assuming familiarity with advanced calculus, classical mechanics, electrodynamics and special relativity, the text begins with a short course on differential geometry, taking a unique top-down approach. Starting with general manifolds on which only tensors are defined, the covariant derivative and affine connection are introduced before moving on to geodesics and curvature. Only then is the metric tensor and the (pseudo)-Riemannian geometry introduced, specialising the general results to this case. The main text describes relativity as a physical theory, with applications to astrophysics and cosmology. It takes the reader beyond traditional courses on relativity through in-depth descriptions of inhomogeneous cosmological models and the Kerr metric. Emphasis is given to complete and clear derivations of the results, enabling readers to access research articles published in relativity journals.

JERZY PLEBAŃSKI (1928–2005) was a Polish theoretical physicist best known for his extensive research into general relativity, nonlinear electrodynamics and mathematical physics. He split his time between Warsaw, Poland and Mexico, his permanent residence from the mid-1970s onwards. He is remembered, among other things, for defining the algebraic classification of the tensor of matter, for finding new solutions of the Einstein equations (for example, the Plebański–Demiański metric), formulation of the heavenly equations and the effective field theory relating GR and supergravity, known as Plebański action. The first part of the book is developed from Plebański's lecture notes.

ANDRZEJ KRASIŃSKI is Emeritus Professor at the Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences in Warsaw. He served for many years on the Editorial Board of the journal General Relativity and Gravitation and has acted as Poland's elected representative on the International Committee of the International Society for General Relativity and Gravitation. He is author of Inhomogeneous Cosmological Models (Cambridge, 1997), co-author of Structures in the Universe by Exact Methods (Cambridge, 2009) and co-editor of Golden Oldies in General Relativity (Springer, 2013). His research record includes many papers on the interpretation of inhomogeneous cosmological models. He is also a co-author of the computer program, Ortocartan, for algebraic calculations in general relativity.

AN INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY

JERZY PLEBAŃSKI

National Polytechnic Institute of Mexico

ANDRZEJ KRASIŃSKI

 $Nicolaus \ Copernicus \ Astronomical \ Center, \ Polish \ Academy \\ of \ Sciences$

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

 $www.cambridge.org \\ Information on this title: www.cambridge.org/9781009415620 \\ DOI: 10.1017/9781009415651$

© Jerzy Plebański and Andrzej Krasiński 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2006 Second edition published 2024

First edition © The Estate of Jerzy Plebański and Andrzej Krasiński 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-41562-0 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

The	scope o	of this text	page xiii
Pref	ace to	the second edition	XV
Ackr	nowledg	gements	xviii
1	How	the theory of relativity came into being (a brief historical s	ketch) 1
	1.1	Special versus general relativity	1
	1.2	Space and inertia in Newtonian physics	1
	1.3	Newton's theory and the orbits of planets	2
	1.4	The basic assumptions of general relativity	3
	Part	I Elements of differential geometry	7
2	A sh	nort sketch of 2-dimensional differential geometry	9
	2.1	Constructing parallel straight lines in a flat space	9
	2.2	Generalisation of the notion of parallelism to curved surfaces	10
3	Tens	sors, tensor densities	12
	3.1	What are tensors good for?	12
	3.2	Differentiable manifolds	12
	3.3	Scalars	14
	3.4	Contravariant vectors	14
	3.5	Covariant vectors	14
	3.6	Tensors of second rank	15
	3.7	Tensor densities	16
	3.8	Tensor densities of arbitrary rank	16
	3.9	Algebraic properties of tensor densities	16
	3.10	Mappings between manifolds	18
	3.11	The Levi-Civita symbol	20
	3.12	Multidimensional Kronecker deltas	21
	3.13	Examples of applications of the Levi-Civita symbol and of the	
		multidimensional Kronecker delta	22
	3.14	Exercises	23
4	Cova	ariant derivatives	24
	4.1	Differentiation of tensors	24

vi		Contents	
	4.2	Axioms of the covariant derivative	26
	4.3	A field of bases on a manifold and scalar components of tensors	27
	4.4	The affine connection	28
	$4.5 \\ 4.6$	The explicit formula for the covariant derivative of tensor density fields Exercises	28 30
5			31
J	5.1	allel transport and geodesic lines Parallel transport	31
	5.1	Geodesic lines	32
	5.2	Exercises	33
6		curvature of a manifold; flat manifolds	34
U	6.1	The commutator of second covariant derivatives	34
	6.2	The commutator of directional covariant derivatives	35
	6.3	The relation between curvature and parallel transport	36
	6.4	Covariantly constant fields of vector bases	41
	6.5	A torsion-free flat manifold	41
	6.6	Parallel transport in a flat manifold	41
	6.7	Geodesic deviation	42
	6.8	Algebraic and differential identities obeyed by the curvature tensor	43
	6.9	Exercises	44
7	Rien	nannian geometry	45
	7.1	The metric tensor	45
	7.2	Riemann spaces	45
	7.3	The signature of a metric, degenerate metrics	46
	7.4	Christoffel symbols	47
	7.5	The curvature of a Riemann space	48
	7.6	Flat Riemann spaces	49
	7.7	Subspaces of a Riemann space Flat Riemann spaces that are globally non Euglidean	49
	$7.8 \\ 7.9$	Flat Riemann spaces that are globally non-Euclidean The Riemann curvature versus the normal curvature of a surface	50 51
	7.10	The geodesic line as the line of extremal distance	51
	7.11	Mappings between Riemann spaces	52
	7.12	Conformally related Riemann spaces	53
	7.13	Conformal curvature	54
	7.14	Timelike, null and spacelike intervals in a 4-dimensional spacetime	56
	7.15	Embeddings of Riemann spaces in Riemann spaces of higher dimension	58
	7.16	The Petrov classification	65
	7.17	Exercises	67
8		metries of Riemann spaces, invariance of tensors	69
	8.1	Symmetry transformations	69
	8.2	The Killing equations	69
	8.3	The connection between generators and the invariance transformations	72
	8.4	Finding the Killing vector fields A Killing vector field along a geodesic is a geodesic deviation field	72
	8.5	A NIME VECTOR HEID MODE A PROCESSE IS A PROCESSE DEVIATION HEID	74

		Contents	vii	
	8.6	Invariance of other tensor fields	74	
	8.7	The Lie derivative	75	
	8.8	The algebra of Killing vector fields	76	
	8.9	Surface-forming vector fields	76	
	8.10	Spherically symmetric 4-dimensional Riemann spaces	77	
	8.11	* Conformal Killing fields and their finite basis	81	
	8.12	* The maximal dimension of an invariance group	83	
	8.13	Exercises	85	
9	Methods to calculate the curvature quickly: differential forms			
	and	algebraic computer programs	89	
	9.1	The basis of differential forms	89	
	9.2	The connection forms	90	
	9.3	The Riemann tensor	91	
	9.4	Using computers to calculate the curvature	92	
	9.5	Exercises	93	
10	The	spatially homogeneous Bianchi-type spacetimes	94	
	10.1	The Bianchi classification of 3-dimensional Lie algebras	94	
	10.2	The dimension of the group versus the dimension of the orbit	99	
	10.3	Action of a group on a manifold	99	
	10.4	Groups acting transitively, homogeneous spaces	100	
	10.5	Invariant vector fields	100	
	10.6	The metrics of the Bianchi-type spacetimes	102	
	10.7	The isotropic Bianchi-type (Robertson–Walker) spacetimes	103	
	10.8	Exercises	106	
11	* Tł	ne Petrov classification by the spinor method	108	
	11.1	What is a spinor?	108	
	11.2	Translating spinors to tensors and vice versa	109	
	11.3	The spinor image of the Weyl tensor	111	
	11.4	The Petrov classification in the spinor representation	111	
	11.5	The Weyl spinor represented as a 3×3 complex matrix	112	
	11.6	The equivalence of the Penrose classes to the Petrov classes	114	
	11.7	The Petrov classification by the Debever method	115	
	11.8	Exercises	116	
	Part	II The theory of gravitation	121	
12	The	Einstein equations and the sources of a gravitational field	123	
	12.1	Why Riemannian geometry?	123	
	12.2	Local inertial frames	123	
	12.3	Trajectories of free motion in Einstein's theory	124	
	12.4	Special relativity versus gravitation theory	127	
	12.5	The Newtonian limit of general relativity	127	
	12.6	Sources of the gravitational field	128	
	12.7	The Einstein equations	128	

viii Contents

	12.8	Hilbert's derivation of the Einstein equations	129
	12.9	The Palatini variational principle	133
	12.10	The asymptotically Cartesian coordinates and the asymptotically flat	199
	10 11	spacetime The Neutonian limit of Finatoin's equations	133
		The Newtonian limit of Einstein's equations Everypoles of sources in the Einstein equations, perfect fluid and dust	133
		Examples of sources in the Einstein equations: perfect fluid and dust	137
		Equations of motion of a perfect fluid	139
		The cosmological constant	140
	12.15	An example of an exact solution of Einstein's equations: a Bianchi type I spacetime with dust source	141
	12 16	* Other gravitation theories	144
	12.10	12.16.1 The Brans–Dicke theory	144
		12.16.2 The Bergmann–Wagoner theory	145
		12.16.3 The Einstein-Cartan theory	145
		12.16.4 The bi-metric Rosen theory	146
	19 17	Matching solutions of Einstein's equations	146
		The weak-field approximation to general relativity	148
		Exercises	154
			104
13		Maxwell and Einstein–Maxwell equations	
		the Kaluza–Klein theory	156
	13.1	The Lorentz-covariant description of electromagnetic field	156
	13.2	The covariant form of the Maxwell equations	156
	13.3	The energy-momentum tensor of electromagnetic field	157
	13.4	The Einstein-Maxwell equations	158
	13.5	* The variational principle for the Maxwell and Einstein–Maxwell	158
	13.6	equations * The Kaluza–Klein theory	150 159
	13.7	Exercises	161
14		rically symmetric gravitational fields of isolated objects	162
	14.1	The curvature coordinates	162
	14.2	Symmetry inheritance	165
	14.3	Spherically symmetric electromagnetic field in vacuum	166
	14.4	The Schwarzschild and Reissner–Nordström solutions	166
	14.5	Orbits of planets in the gravitational field of the Sun	169
	14.6	Deflection of light rays in the Schwarzschild field	175
	14.7	Measuring the deflection of light rays	178
	14.8	Gravitational lenses	180
	14.9	The spurious singularity of the Schwarzschild solution at $r = 2m$	182
		* Embedding the Schwarzschild spacetime in a flat Riemannian space	187
		Interpretation of the spurious singularity at $r = 2m$; black holes	191
		The Schwarzschild metric in other coordinate systems	193
		The equation of hydrostatic equilibrium	194
	14.14	The 'interior Schwarzschild solution'	196

		Contents	ix
	14.16	* The maximal analytic extension of the Reissner–Nordström metric Motion of particles in the Reissner–Nordström spacetime with $e^2 < m^2$ Exercises	197 205 209
15	Relat	tivistic hydrodynamics and thermodynamics	211
	15.1	Motion of a continuous medium in Newtonian hydrodynamics	211
	15.2	Motion of a continuous medium in relativistic hydrodynamics	213
	15.3	The equations of evolution of θ , $\sigma_{\alpha\beta}$, $\omega_{\alpha\beta}$ and \dot{u}^{α} ; the Raychaudhuri	
		equation	216
	15.4	Singularities and singularity theorems	218
	15.5	Relativistic thermodynamics	219
	15.6	Exercises	222
16	Relat	tivistic cosmology I: general geometry	223
	16.1	A continuous medium as a model of the Universe	223
	16.2	The geometric optics approximation	224
	16.3	The redshift	226
	16.4	The optical tensors	228
	16.5	The apparent horizon	230
	16.6	* The double-null tetrad	231
	16.7	* The equations of propagation of the optical scalars	233
	16.8	* The Goldberg–Sachs theorem	235
	16.9	* The area distance	240
		* The reciprocity theorem	243
		Other observable quantities	246
	16.12	The Fermi–Walker transport	246
		Position drift of light sources	248
	16.14	Exercises	253
17	Relativistic cosmology II: the Robertson–Walker geometry		
	17.1	The Robertson–Walker metrics as models of the Universe	255
	17.2	Optical observations in an R–W universe	257
		17.2.1 The redshift	257
		17.2.2 The redshift–distance relation	258
		17.2.3 Number counts	259
	17.3	The Friedmann equation	260
	17.4	The Friedmann solutions with $\Lambda = 0$	262
	17.5	The redshift–distance relation in the $\Lambda=0$ Friedmann models	263
	17.6	The Newtonian cosmology	264
	17.7	The Friedmann solutions with the cosmological constant	266
	17.8	The Λ CDM model	269
	17.9	The redshift–distance relation in the $\Lambda \neq 0$ Friedmann models	271
		The redshift drift: a test for accelerating expansion	272
		Horizons in the Robertson–Walker models	273
		The inflationary models and the 'problems' they solved	277
	17.13	The value of the cosmological constant	282

x Contents

	17.14	The 'history of the Universe'	282
		Invariant definitions of the Robertson–Walker models	285
		Different representations of the R–W metrics	286
		Exercises	287
18	Rela	tivistic cosmology III: the Lemaître–Tolman geometry	289
	18.1	The comoving-synchronous coordinates	289
	18.2	The spherically symmetric inhomogeneous models	289
	18.3	The Lemaître–Tolman model	291
	18.4	Conditions of regularity at the centre	295
	18.5	Formation of voids in the Universe	296
	18.6	Formation of other structures in the Universe	297
		18.6.1 Density to density evolution	298
		18.6.2 Velocity to density evolution	300
		18.6.3 Velocity to velocity evolution	302
	18.7	The influence of cosmic expansion on planetary orbits	303
	18.8	* The apparent horizons for a central observer in L–T models	305
	18.9	* Black holes in the evolving Universe	309
	18.10	* Shell crossings and necks/wormholes	314
		$18.10.1 \; E < 0$	318
		18.10.2 E = 0	319
		18.10.3 E > 0	320
		18.10.4 Final comment	320
	18.11	The redshift along radial rays	320
	18.12	The blueshift	322
	18.13	* Apparent horizons for noncentral observers	326
	18.14	The influence of inhomogeneities in matter distribution on the cosmic	
		microwave background radiation	327
	18.15	Matching the L–T models to the Schwarzschild and Friedmann solutions	330
	18.16	* The shell focusing singularity	331
	18.17	* Extending an L–T spacetime through a shell crossing singularity	334
	18.18	* Singularities and cosmic censorship	336
	18.19	Solving the 'horizon problem' without inflation	341
	18.20	* The evolution of $R(t, M)$ versus the evolution of $\rho(t, M)$	343
	18.21	* Increasing and decreasing density perturbations	344
	18.22	Mimicking accelerating expansion of the Universe by inhomogeneities	
		in matter distribution	347
	18.23	Drift of light rays	349
	18.24	* L&T curio shop	351
		18.24.1 Lagging cores of the Big Bang	351
		18.24.2 Strange or nonintuitive properties of the L–T model	352
		18.24.3 Chances to fit an L–T model to observations	355
		18.24.4 An 'in one ear and out the other' Universe	355
		18.24.5 A 'string of beads' Universe	357

		Contents	xi
		18.24.6 Uncertainties in inferring the spatial distribution of matter	358
		18.24.7 Is the distribution of matter in our Universe fractal?	360
		18.24.8 General results related to the L–T models	360
	18.25	Exercises	361
19	Rela	tivistic cosmology IV: simple generalisations of L–T and related	l
	geon	netries	366
	19.1	The plane- and hyperbolically symmetric spacetimes	366
	19.2	G_3/S_2 -symmetric dust solutions with $R_{,r} \neq 0$	367
	19.3	Plane symmetric dust solutions with $R_{,r} \neq 0$	368
	19.4	G_3/S_2 -symmetric dust in electromagnetic field, the case $R_{,r} \neq 0$	370
		19.4.1 Integrals of the field equations	370
		19.4.2 Matching the charged dust metric to the Reissner–Nordström	
		metric	374
		19.4.3 Prevention of the Big Crunch singularity by electric charge	375
		19.4.4 * Charged dust in curvature and mass-curvature coordinates	378
		19.4.5 Regularity conditions at the centre	380
		19.4.6 * Shell crossings in charged dust	381
	19.5	The Datt–Ruban solution	383
	19.6	Exercises	390
20	Rela	tivistic cosmology V: the Szekeres geometries	391
	20.1	The Szekeres–Szafron family of metrics	391
		20.1.1 The $\beta_{,z} = 0$ subfamily	392
		20.1.2 The $\beta_{,z} \neq 0$ subfamily	396
		20.1.3 Interpretation of the Szekeres–Szafron coordinates	397
		20.1.4 Common properties of the two subfamilies	399
		20.1.5 * The invariant definitions of the Szekeres–Szafron metrics	401
	20.2	The Szekeres solutions and their properties	402
		20.2.1 The $\beta_{,z} = 0$ subfamily	402
		20.2.2 The $\beta_{,z} \neq 0$ subfamily	403
	20.2	20.2.3 * The $\beta_{,z} = 0$ family as a limit of the $\beta_{,z} \neq 0$ family	404
	20.3	Properties of the quasi-spherical Szekeres solutions with $\beta_{,z} \neq 0 = \Lambda$	405
		20.3.1 Basic physical restrictions	406
		20.3.2 The significance of \mathcal{E}	406
		20.3.3 Conditions of regularity at the origin 20.3.4 Shell crossings	409 412
		20.3.5 Regular maxima and minima	415
		20.3.6 The mass dipole	416
		20.3.7 * The absolute apparent horizon	418
		20.3.8 * The apparent horizon and its relation to the AAH	422
		20.3.9 * Which is the true horizon – the AH or the AAH?	427
	20.4	* The Goode–Wainwright representation of the Szekeres solutions	429
	20.5	Selected interesting subcases of the Szekeres–Szafron family	433
	-	20.5.1 The Szafron–Wainwright model	433

xii Contents

		20.5.2 The toroidal universe of Senin	435
	20.6	Selected further reading on the Szekeres models	438
	20.7	Exercises	440
0.1			
21	21.1	Kerr metric The Kerr–Schild metrics	442
			442
	21.2 21.3	The derivation of the Kerr metric by the original method	$444 \\ 449$
	21.3 21.4	Basic properties * Designation of the Kern metric by Center's method from the	449
	21.4	* Derivation of the Kerr metric by Carter's method – from the separability of the Klein–Gordon equation	454
	21.5	The event horizons and the stationary limit hypersurfaces	459
	21.6	The Hamiltonian and the Poisson bracket	464
	21.7		465
	21.8	Geodesics in the equatorial plane	468
	21.9	*The maximal analytic extension of the Kerr metric	475
		* The Penrose process	485
		Stationary—axisymmetric spacetimes and locally nonrotating observers	487
		* Ellipsoidal spacetimes	490
		A Newtonian analogue of the Kerr solution	492
		A source of the Kerr field?	493
		Exercises	493
22	Relat	tivity enters technology: the Global Positioning System	499
	22.1	Purpose and setup	499
	22.2	The principle of position determination	500
	22.3	The reference frames and the Sagnac effect	500
	22.4		502
	22.5	Selected corrections of the orbits of the GPS satellites	504
		22.5.1 Corrections for gravity and velocity	504
		22.5.2 The eccentricity correction	507
	22.6	The 9 largest relativistic effects in the GPS	507
	22.7	Exercises	509
23	Subj	ects omitted from this book	511
24	-	ments to selected exercises and calculations	514
		Exercise 1 to Chapter 14	514
	24.2	Exercise 14 to Chapter 14	515
	24.3	Verifying Eqs. (19.35) with (19.31) and (19.32) with (19.28)	516
	24.4	Verifying the Einstein equations (20.2), (20.9) and (20.11)	519
	24.5	Equation (20.179) defines η at the AAH uniquely	521
	24.6	The four curves in Fig. 20.4 meet at one point	521
	24.7	The discarded case in Eqs. (20.2)–(20.11)	522
	24.8	Hints for verifying Eq. (21.28)	526
Refer	ences	, ,	527
Index			546

The scope of this text

General relativity is the currently accepted theory of gravitation. Under this heading one could include a huge amount of material. For the needs of this theory an elaborate mathematical apparatus was created. It has partly become a self-standing sub-discipline of mathematics and physics, and it keeps developing, providing input or inspiration to physical theories that are being newly created (such as gauge field theories, supergravitation and the brane-world theories). From the gravitation theory, descriptions of astronomical phenomena taking place in strong gravitational fields and in large-scale sub-volumes of the Universe are derived. This part of gravitation theory develops in connection with results of astronomical observations. For the needs of this area, another sophisticated formalism was created (the Parametrised Post-Newtonian, PPN, formalism). Finally, some tests of the gravitation theory can be carried out in laboratories, either terrestrial or orbital. These tests, their improvements and projects of further tests have led to developments in mathematical methods and in technology that are by now an almost separate branch of science – as an example, one can mention here the search for gravitational waves and the calculations of properties of the wave signals to be expected.

In this situation, no single textbook can attempt to present the whole of gravitation theory, and the present text is no exception. We made the working assumption that relativity is part of physics (this view is not universally accepted!). The purpose of this course is to present those results that are most interesting from the point of view of a physicist, and were historically the most important. We are going to lead the reader through the mathematical part of the theory by a rather short route, but in such a way that he/she does not have to take anything on our word, is able to verify every detail and, after reading the whole text, will be prepared to solve several problems by him/herself. Further help in this should be provided by the exercises in the text and the literature recommended for further reading.

The introductory part (Chapters 1–7), although assembled by J. Plebański long ago, has never been published in book form.

It differs from other courses on relativity in that it introduces differential geometry by a top-down method. It begins with general manifolds, on which no structures except tensors are defined, and discusses their basic properties. Then it adds the notion of the covariant derivative and affine connection,

xiii

¹ A part of that material had been semi-published as copies of typewritten notes (Plebański, 1964).

xiv

The scope of this text

without introducing the metric yet, and again proceeds as far as possible. At that level it defines geodesics via parallel displacement and presents the properties of curvature. Only at this point it introduces the metric tensor and the (pseudo) Riemannian geometry and specialises the results derived earlier to this case. Then it proceeds to the presentation of more detailed topics, such as symmetries, the Bianchi classification and the Petrov classification.

Some of the chapters on classical relativistic topics contain material that, to the best of our knowledge, has never been published in any textbook. In particular, this applies to Chapter 8 (on symmetries) and to Chapter 16 (on cosmology with general geometry). Chapters 18–20 (on inhomogeneous cosmologies) are entirely based on original papers. Parts of Chapters 18, 19 and 20 cover the material introduced in A. K.'s monograph on inhomogeneous cosmological models (Krasiński, 1997). However, the presentation here was thoroughly rearranged, extended and brought up to date. We no longer intended to briefly mention all contributions to the subject; rather, we have placed the emphasis on complete and clear derivations of the most important results. That material has so far existed only in scattered journal papers and has been assembled into a textbook for the first time (the monograph by Krasiński, 1997, was only a concise review). Taken together, this collection of knowledge constitutes an important and interesting part of relativistic cosmology whose meaning has, unfortunately, not yet been appreciated properly by the astronomical community.

Most figures for this text, even when they look the same as the corresponding figures in the published papers, were newly generated by A. K. using the program Gnuplot, sometimes on the basis of numerical calculations programmed in Fortran 90. The only figures taken verbatim from other sources are those that illustrated the joint papers of A. K. with C. Hellaby and K. Bolejko, and of N. Ashby in Chapter 22. The latter are reproduced here with the permission of the author and of N. Dadhich as a representative of the publisher, Inter-University Centre for Astronomy and Astrophysics in Pune, India.

J. Plebański kindly agreed to be included as a co-author of this text – having done his part of the job long ago. Unfortunately, he was not able to participate in the writing up and proofreading. He died while the first edition of this book was being edited. Therefore, the second author (A. K.) is exclusively responsible for any errors.

Note for the reader. Some parts of this book may be skipped on first reading, since they are not necessary for understanding the material that follows. They are marked by asterisks. Chapters 18–20 are expected to be the highlights of this book. However, they go far beyond standard courses of relativity and may be skipped by those readers who wish to remain on the well-beaten track. Hesitating readers may read on, but can skip the sections marked by asterisks.

Andrzej Krasiński Warsaw, September 2005 and May 2023

Preface to the second edition

The main reason why a new edition of this book was needed is that during the 17 years after the first edition several little errors have been discovered in it. Mostly, they are innocent typos that can be corrected by a careful reader (most of them were discovered by my then-student, Mr Przemysław Jacewicz, to whom I express my gratitude). However, a few required significant changes. The list of those changes is given further below.

By this opportunity, a few sections and a new chapter were added. The added sections describe the developments in understanding the cosmological implications of the Lemaître–Tolman and Szekeres models that occurred after 2006. The added Chapter 22, on relativistic effects in the Global Positioning System, is a thought-provoking demonstration that general relativity became a necessary component in today's down-to-Earth technology.

A few reviewers of the first edition complained that this book is not really an introduction to relativity and cosmology, but rather an advanced-level monograph, so its title is misleading. Still, together with the publisher, we decided to keep the 'introduction' in the title, for the following reasons:

- 1. No prior familiarity of the reader with general relativity and differential geometry is assumed in this book. It takes a careful reader to some height of advancement, but it begins at a very basic level.
- 2. The book omits several topics (see Chapter 23). For example, the reviewers of the first edition complained about the omission of perturbative methods in cosmology. Consequently, this is not a complete monograph. To become an expert in relativity the reader will have to continue his/her reading with other books. The reason for the omissions was that we intended to make our readers familiar with the mathematical and physical basics of relativity, leaving out those applications that require extended additional study. Ergo, our book is not an encyclopaedia of the subject, but ... well, an introduction.

My co-author and former master, Jerzy Plebański, died in 2005. But the part of this book that is directly based on his works and on my notes to his lectures is still a solid fundament of the whole.

The list of significant changes from the first edition

Several figures were redrawn to make them graphically clearer or to make the symbols in them consistent with the text.

xvi

Preface to the second edition

Section 9.4 (on algebraic computing) was shortened because algebraic computing is no longer a novelty.

Section 10.5 (on invariant vector fields) was re-edited for better clarity.

Chapter 11 (on spinors) was re-edited and rearranged to improve the clarity of presentation, and extended hints were added to most exercises.

Section 12.16 (on other theories of gravitation) was re-edited.

Section 12.18 (on the weak-field approximation to general relativity) was re-edited to improve the clarity of presentation, and the information about the Gravity Probe B experiment was updated.

Sections 14.6 (on measuring the deflection of light rays) and 14.8 (on gravitational lenses) were re-edited to make them more up to date, and photographs of two gravitational lenses were added at the end of Sec. 14.8.

A part of Chapter 16 (on cosmology in general geometry) was reshuffled to achieve a more logical ordering of the exposition.

Chapter 17 (on cosmology in Robertson–Walker geometry) was substantially re-edited and updated in several places.

Chapter 18 (on cosmology in Lemaître–Tolman geometry) was re-edited in several places. In particular,

- Section 18.18 (on singularities and cosmic censorship) was re-edited and shortened.
- The old Subsection 18.20.2 (now 18.24.2) had to be partly corrected, but the conclusion remains unchanged.

The old Chapter 19 was split into two. The old Sections 19.1–19.5 became the new Chapter 19 under the title 'Relativistic cosmology IV: simple generalisations of L–T and related geometries'. By this opportunity, it was extended for results obtained after the first edition (see below). The remaining part of the old Chapter 19 became Chapter 20 with the title: 'Relativistic cosmology V: the Szekeres geometries'.

Consequently, the old Chapter 20 (on the Kerr metric) became Chapter 21.

The old Sec. 19.5.3 (now Sec. 20.1.3) was corrected at several places.

The old Subsection 19.6.3 (now Subsection 20.2.3) was completely rewritten to get rid of several errors.

The old Subsection 19.7.6 (now Subsection 20.3.7) was completely rewritten to put its terminology into agreement with the existing literature.

The old Subsection 19.7.7 (on nonexistent Szekeres wormholes) was removed.

The old Section 19.10, containing the proof that one subcase in solving the Einstein equations for the Szekeres-type metrics leads to a contradiction, was transferred to the new Chapter 24 and is now Section 24.7. It contains a large amount of calculations with a rather disappointing end result.

Chapter 21 (old number 20) was re-edited in several places to improve the clarity of presentation.

The following new material was added:

(i) A new Section 8.5 on the relation between the Killing vectors and geodesic deviation.

Preface to the second edition

xvii

- (ii) New Exercises 9 and 14 at the end of Chapter 8.
- (iii) Several new exercises at the end of Chapter 12.
- (iv) At the end of Chapter 16:
 - A derivation of the formula for the Fermi–Walker transport and references to the original Fermi and Walker papers.
 - A derivation of the formula for the position drift of a light source in a general geometry, following the paper by M. Korzyński and J. Kopiński (2018).
- (v) In Chapter 17, the following three new sections:
 - Section 17.8, introducing the Λ CDM model.
 - Section 17.9, with the derivation of the distance–redshift relation in the Friedmann models with Λ .
 - Section 17.10, on the redshift drift in Robertson-Walker models.
- (vi) Several new exercises at the end of Chapter 17.
- (vii) Section 18.12, explaining the reasons why some objects in the Universe may display blueshift rather than redshift.
- (viii) Section 18.13, describing how apparent horizons in L–T models are radically different for noncentral observers.
 - (ix) At the end of Chapter 18 a new section that demonstrates how the accelerating expansion of the Universe can be mimicked by inhomogeneities in mass distribution.
 - (x) Also at the end of Chapter 18 an exemplary illustration of the rate of change of position of a distant galaxy on the sky caused by the drift described in the newly added section at the end of Chapter 16.
 - (xi) A new Section 19.3, in which it is argued that spaces of constant time in plane symmetric spacetimes are most naturally interpreted as flat tori.
- (xii) At the end of the new Sec. 19.4.6 the demonstration how a charged dust ball can be evolved through the minimal size, only to hit a shell crossing singularity after that.
- (xiii) Second half of the new Section 19.5 a discussion of evolution of the charged Ruban (1972, 1983) solution matched to Reissner–Nordström (RN).
- (xiv) At the end of the new Section 19.5 spacetime diagrams of the configuration mentioned above and of the neutral Ruban (1968, 1969) model matched to Schwarzschild.
- (xv) The new Subsections 20.3.8 and 20.3.9, in which the 'absolute apparent horizon' (AAH) and the ordinary apparent horizon (AH) of the central observer in the quasi-spherical Szekeres spacetimes are compared.
- (xvi) At the end of the new Chapter 20, a new Section 20.6 with short descriptions of a few papers published after the first edition of this book that contain instructive contributions to the Szekeres geometries.
- (xvii) Several new exercises to Chapter 21 (old Chapter 20).
- (xviii) A new Chapter 22 on the relativistic effects in the Global Positioning System.
- (xix) Another new Chapter 24 that contains detailed hints on how to solve the more difficult exercises and verify complicated calculations.

Andrzej Krasiński Warsaw, 2023

Acknowledgements

We thank Charles Hellaby for comments on the various properties of the Lemaître–Tolman models and for providing copies of his unpublished works on this subject. Some of the figures used in this text were copied from C. Hellaby's files, with his permission. We are grateful to Pankaj S. Joshi for helpful comments on cosmic censorship and singularities, and to Amos Ori for clarifying the matter of shell crossings in charged dust. The correspondence with Amos significantly contributed to clarifying several points in Section 19.4. We are also grateful to George Ellis for his very useful comments on the first draft of this book. We thank Bogdan Mielnik and Maciej Przanowski, who were of great help in the difficult communication between one of the authors residing in Poland and the other in Mexico. M. Przanowski had carefully proofread a large part of this text and caught several errors. So did Krzysztof Bolejko, who was the first reader of this text even before it was typed into a computer file. J. P. acknowledges the support from the Consejo Nacional de Ciencia y Teconología projects 32427E and 41993F.

In preparing the second edition, the second author (A. K.) received valuable help from Leszek Sokołowski concerning the variational principle for the Einstein–Maxwell equations. Mauro Carfora and Bob Jantzen helped with locating the original papers on the Fermi–Walker transport. Marie-Noelle Célérier helped with finding references to Michel Chasles papers. Neil Ashby kindly sent me the eps files of the figures illustrating his papers and allowed me to use them in this book. Consultations by Kayll Lake, George Ellis, Roy Maartens and Mikołaj Korzyński are also gratefully acknowledged.