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Preface

These notes developed as a result of courses taught at Caltech and at the University
of Chicago, and aim at providing a clear and concise introduction to the subjects
of inverse problems and data assimilation. To cater to students with diverse
backgrounds and interests, we complement the material covered in our courses
with hands-on assignments; these notes contain several exercises that we have
used for this purpose. Additionally, we have found it pedagogically beneficial
to ask students to complete an independent project, implementing the methods
studied in class to solve an applied problem of their choice. Students can use the
bibliographic comments included at the end of each chapter to help them choose
and formulate their own projects. The notes are intended to be self-contained,
and thus to be useful not only as a teaching resource, but also for independent
self-guided learning.
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Introduction

Aim and Overview of the Notes

The aim of these notes is to provide a clear and concise mathematical introduction
to the subjects of Inverse Problems and Data Assimilation, and their inter-
relations, together with bibliographic pointers to literature in this area that
goes into greater depth. The target audiences are advanced undergraduates
and beginning graduate students in the mathematical sciences, together with
researchers in the sciences and engineering who are interested in the systematic
underpinnings of methodologies widely used in their disciplines.

In its most basic form, inverse problem theory is the study of how to estimate
model parameters from data. Often the data provide indirect information about
these parameters, corrupted by noise. The theory of inverse problems, however,
is much richer than just parameter estimation. For example, the underlying theory
can be used to determine the effects of noisy data on the accuracy of the solution;
it can be used to determine what kind of observations are needed to accurately
determine a parameter; and it can be used to study the uncertainty in a parameter
estimate and, relatedly, is useful, for example, in the design of strategies for
control or optimization under uncertainty, and for risk analysis. The theory thus
has applications in many fields of science and engineering.

To apply the ideas in these notes, the starting point is a mathematical model
mapping the unknown parameters to the observations: termed the “forward”
or “direct” problem, and often a subject of research in its own right. A good
forward model will not only identify how the data is dependent on parameters,
but also what sources of noise or model uncertainty are present in the postulated
relationship between unknown parameters and data. For example, if the desired
forward problem cannot be solved analytically, then the forward model may be
approximated by a numerical simulation; in this case, discretization may be
considered as a source of error. Once a relationship between model parameters,

xiii
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xiv Introduction

sources of error, and data is clearly defined, the inverse problem of estimating
parameters from data can be addressed. The theory of inverse problems can be
separated into two cases: (1) the ideal case where data is not corrupted by noise
and is derived from a known perfect model; and (2) the practical case where
data is incomplete and imprecise. The first case is useful for classifying inverse
problems and determining if a given set of observations can, in principle, allow
to fully reconstruct the model parameters; this provides insight into conditions
needed for existence, uniqueness, and stability of a solution to the inverse
problem. The second case is useful for the formulation of practical algorithms
to learn about parameters, and uncertainties in their estimates, and will be the
focus of these notes.

A model for which a solution exists, is unique, and changes continuously with
input (stability) is termed “well-posed.” Conversely, a model lacking any of
these properties is termed “ill-posed.” Ill-posedness is present in many inverse
problems, and mitigating it is an extensive part of the subject. Out of the different
approaches to formulating an inverse problem, our notes emphasize the Bayesian
framework. Nonetheless, practical algorithms in this area include a variety of
related optimization approaches, and these are also discussed in detail.

The goal of the Bayesian framework is to find a probability measure that
assigns a probability to each possible solution for a parameter 𝑢, given the data
𝑦. Bayes’ formula states that

P(𝑢 | 𝑦) =
1

P(𝑦)
P(𝑦 | 𝑢) P(𝑢).

This formula enables calculation of the posterior probability on 𝑢 | 𝑦, P(𝑢 | 𝑦),
in terms of the product of the data likelihood P(𝑦 | 𝑢) and the prior information
on the parameter encoded in P(𝑢). The likelihood describes the probability of
the observed data 𝑦 if the input parameter were set to be 𝑢; it is determined by
the forward model, and the structure of the noise. The normalization constant
P(𝑦) ensures that P(𝑢 | 𝑦) is a probability measure. There are four primary
benefits to this framework: (1) it provides a clear theoretical setting in which
the forward model choice, the description of how noise enters the data and
the forward model, and a priori information on the unknown parameter are all
explicit; (2) it provides information about the entire solution space for possible
input parameter choices; (3) it naturally leads to quantification of uncertainty
and risk in parameter estimates; (4) it is generalizable to a wide class of inverse
problems, in finite and infinite dimension, and comes with a well-posedness
theory mitigating the ill-posedness of a naive deterministic approach.

The first part of the notes is dedicated to studying the Bayesian framework for
inverse problems. Techniques such as importance sampling and Markov Chain
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Introduction xv

Topic Inverse Problems Data Assimilation

Bayesian Formulation Chapter 1 Chapter 7

Linear Setting Chapter 2 Chapter 8

Optimization Perspective Chapter 3 Chapter 9

Gaussian Approximation Chapter 4 Chapter 10

Sampling Chapters 5 and 6 Chapters 11 and 12

Kalman Inversion Chapter 13

Table 1 Structure of the notes: the organization of the material emphasizes the

unity between the subjects of inverse problems and data assimilation.

Monte Carlo (MCMC) methods are introduced; these methods have the desirable
property that in the limit of an infinite number of samples they reproduce
the full posterior distribution. Since it is often computationally intensive to
implement these methods, especially in high-dimensional problems, techniques
to approximate the posterior by a Dirac or a Gaussian distribution are also
discussed, along with related optimization algorithms to determine the best
approximation.

The second part of the notes covers data assimilation. This refers to a particular
class of inverse problems in which the unknown parameter is the initial condition
of a dynamical system or, in the case of stochastic dynamics, the entire sequence
of subsequent states of the system, and the data comprises partial and noisy
observations of the (possibly stochastic) dynamical system. A primary use of
data assimilation is in forecasting, where the purpose is to provide better future
estimates than can be obtained using either the data or the model alone. All the
methods from the first part of the course may be applied directly, but there are
other new methods which exploit the Markovian structure to update the state of
the system sequentially, rather than to learn about the initial condition. (But, of
course, knowledge of the initial condition may be used to inform the state of the
system at later times.)

The third and final part of the notes describes methods for generic inverse
problems that build on data assimilation ideas, thus bringing together the material
in the first two parts. The structure of the notes, as well as the presentation,
emphasizes the inter-relations between inverse problems and data assimilation.
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xvi Introduction

As summarized in Table 1, each chapter in the first part (inverse problems) has
its counterpart in the second part (data assimilation).

Notation

Throughout the notes we use N to denote the positive integers {1, 2, 3, . . .}, and
Z
+ to denote the non-negative integers N ∪ {0} = {0, 1, 2, 3, . . .}. The symbol

𝐼𝑑 denotes the identity matrix on R𝑑 , and 𝐼𝑑 denotes the identity mapping.
We use | · | to denote the Euclidean norm corresponding to the inner-product
〈𝑎, 𝑏〉 = 𝑎⊤𝑏; we also use the notation | · | to denote the induced norm on
matrices.

A symmetric matrix 𝐴 is positive definite (resp. positive semi-definite) if
〈𝑢, 𝐴𝑢〉 is positive (resp. non-negative) for all 𝑢 ≠ 0. This will sometimes be
denoted by 𝐴 > 0 (resp. 𝐴 ≥ 0). For 𝐴 > 0, we denote by | · |𝐴 the weighted norm
defined by |𝑣 |2

𝐴
= 𝑣⊤𝐴−1𝑣. The corresponding weighted Euclidean inner-product

is given by 〈· , ·〉𝐴 ≔ 〈· , 𝐴−1·〉. We use ⊗ to denote the outer product between
two vectors: (𝑎 ⊗ 𝑏)𝑐 = 〈𝑏, 𝑐〉𝑎. We let 𝐵(𝑢, 𝛿) denote the open ball of radius 𝛿
at 𝑢, in the Euclidean norm. We also use det and Tr to denote the determinant
and trace functions on matrices.

Throughout, we denote by P(·), P(· | ·) the probability density function (pdf)
of a random variable and its conditional pdf, respectively. We write

𝜌( 𝑓 ) = E𝜌 [ 𝑓 ] =

∫
R𝑑

𝑓 (𝑢)𝜌(𝑢)𝑑𝑢

to denote expectation of 𝑓 : R𝑑 ↦→ Rwith respect to pdf 𝜌 onR𝑑 . The distribution
of the random variables in these notes will often have density with respect to
Lebesgue measure, but occasional use of Dirac masses will be required; we will
use the notational convention that Dirac mass at point 𝑣 has “density” 𝛿(· − 𝑣),
also denoted by 𝛿𝑣 (·). When a random variable 𝑢 has pdf 𝜌 we will write 𝑢 ∼ 𝜌.

We use ⇒ to denote weak convergence of probability measures; that is, 𝜌𝑛 ⇒ 𝜌

if 𝜌𝑛 ( 𝑓 ) → 𝜌( 𝑓 ) for all bounded and continuous 𝑓 : R𝑑 ↦→ R.
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