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1

Bayesian Inverse Problems and Well-Posedness

In this chapter we introduce the Bayesian approach to inverse problems in which

the unknown parameter and the observed data are viewed as random variables.

In this probabilistic formulation, the solution of the inverse problem is the

posterior distribution on the parameter given the data. We will show that the

Bayesian formulation leads to a form of well-posedness: small perturbations

of the forward model or the observed data translate into small perturbations of

the posterior distribution. Well-posedness requires a notion of distance between

probability measures. We introduce the total variation and Hellinger distances,

giving characterizations of them, and bounds relating them, that will be used

throughout these notes. We prove well-posedness in the Hellinger distance.

The chapter is organized as follows. Section 1.1 introduces the formulation of

Bayesian inverse problems. In Section 1.2 we derive a formula for the posterior

pdf and explain how several estimators for the unknown parameter can be

obtained using the posterior. Section 1.3 describes the well-posedness of the

Bayesian formulation together with the necessary background on distances

between probability measures. The chapter closes with bibliographical remarks

in Section 1.4.

1.1 Formulation of Bayesian Inverse Problems

We consider the following setting. We let 𝐺 : R𝑑 → R𝑘 define the forward model

and aim to recover an unknown parameter 𝑢 ∈ R𝑑 from data 𝑦 ∈ R𝑘 given by

𝑦 = 𝐺 (𝑢) + 𝜂, (1.1)

where 𝜂 ∈ R𝑘 represents observation noise. We view (𝑢, 𝑦) ∈ R𝑑 × R𝑘 as a

random variable, whose distribution is specified by means of the following
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4 Bayesian Inverse Problems and Well-Posedness

assumption on the distribution of (𝑢, 𝜂) ∈ R𝑑 ×R𝑘 and the relationship between

𝑢, 𝑦 and 𝜂 postulated in equation (1.1).

Assumption 1.1 The distribution of the random variable (𝑢, 𝜂) ∈ R𝑑 × R𝑘 is

defined by:

• 𝑢 ∼ 𝜌(𝑢), 𝑢 ∈ R𝑑 .

• 𝜂 ∼ 𝜈(𝜂), 𝜂 ∈ R𝑘 .

• 𝑢 and 𝜂 are independent, written 𝑢 ⊥ 𝜂.

Here 𝜌 and 𝜈 describe the pdfs of the random variables 𝑢 and 𝜂, respectively.

Then 𝜌(𝑢) is called the prior pdf and, for each fixed 𝑢 ∈ R𝑑 , 𝑦 | 𝑢 ∼ 𝜈
(
𝑦−𝐺 (𝑢)

)

determines the likelihood function. In this probabilistic perspective, the solution

to the inverse problem is the conditional distribution of 𝑢 given 𝑦, which is

called the posterior distribution, and will be denoted by 𝑢 | 𝑦 ∼ 𝜋𝑦 (𝑢). The

posterior pdf determines, for any candidate parameter value in R𝑑 , how probable

that parameter is, based on prior assumptions and the link between parameter

and data, all expressed probabilistically. In particular, the posterior contains

information about the level of uncertainty in the parameter recovery: for instance,

large posterior covariance typically indicates that the data contains insufficient

information to accurately recover the input parameter.

1.2 Formula for Posterior pdf: Bayes’ Theorem

Bayes’ theorem is a bridge connecting the prior, the likelihood, and the posterior.

Theorem 1.2 (Bayes’ Theorem) Let Assumption 1.1 hold, and assume that

𝑍 = 𝑍 (𝑦) ≔
∫

R𝑑

𝜈
(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢)𝑑𝑢 > 0.

Then 𝑢 | 𝑦 ∼ 𝜋𝑦 (𝑢), where

𝜋𝑦 (𝑢) = 1

𝑍
𝜈
(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢). (1.2)

Proof Denote by P(·) the pdf of a random variable and by P(· | ·) its conditional

pdf. We have

P(𝑢, 𝑦) = P(𝑢 | 𝑦) P(𝑦), if P(𝑦) > 0,

P(𝑢, 𝑦) = P(𝑦 | 𝑢) P(𝑢), if P(𝑢) > 0.
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1.2 Formula for Posterior pdf: Bayes’ Theorem 5

Note that the marginal pdf on 𝑦 is given by

P(𝑦) =
∫

R𝑑

P(𝑢, 𝑦)𝑑𝑢

=

∫

R𝑑

P(𝑦 | 𝑢) P(𝑢)𝑑𝑢 = 𝑍 > 0.

Then

P(𝑢 | 𝑦) = 1

P(𝑦) P(𝑦 | 𝑢) P(𝑢) = 1

P(𝑦) 𝜈
(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢) (1.3)

for both P(𝑢) = 𝜌(𝑢) > 0 and P(𝑢) = 𝜌(𝑢) = 0. �

We will often denote the likelihood function by l(𝑢) ≔ 𝜈
(
𝑦 −𝐺 (𝑢)

)
. We then

write

𝜋𝑦 (𝑢) = 1

𝑍
l(𝑢)𝜌(𝑢),

omitting the data 𝑦 in the likelihood function; when no confusion arises we will

also simply write 𝜋(𝑢) for the posterior pdf, rather than 𝜋𝑦 (𝑢).
Remark 1.3 The proof of Theorem 1.2 shows that in order to apply Bayes’

formula (1.2) one needs to guarantee that the normalizing constant P(𝑦) = 𝑍 is

positive; in other words, the marginal density of the observed data 𝑦 needs to

be positive. This is simply the natural assumption that the observed data could

indeed have been observed, given the probabilistic conditions in Assumption 1.1.

From now on it will be assumed without further notice that P(𝑦) = 𝑍 > 0. Finally,

we remark that throughout these notes we will denote normalizing constants

generically by 𝑍, and depending on the context the normalizing constant may

sometimes be interpreted as the marginal density of an underlying data set. ♦
The posterior distribution 𝜋𝑦 (𝑢) contains all the knowledge on the parameter

𝑢 available in the prior and the data. In applications it is often useful, however, to

summarize the posterior distribution through a few numerical values. Summariz-

ing the posterior is particularly important if the parameter is high-dimensional,

since then visualizing the posterior or detecting regions of high posterior proba-

bility is nontrivial. Two natural numerical summaries are the posterior mean and

the posterior mode.

Definition 1.4 The posterior mean estimator of 𝑢 given data 𝑦 is the mean of

the posterior distribution:

𝑢PM =

∫

R𝑑

𝑢𝜋𝑦 (𝑢) 𝑑𝑢.
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6 Bayesian Inverse Problems and Well-Posedness

The maximum a posteriori (MAP) estimator of 𝑢 given data 𝑦 is the mode of

the posterior distribution 𝜋𝑦 (𝑢), defined as

𝑢MAP = arg max
𝑢∈R𝑑

𝜋𝑦 (𝑢).

This maximum may not be uniquely defined, in which case we talk about a,

rather than the, MAP estimator. ♦

The importance of the MAP and the posterior mean already suggest the need

to compute maxima (for the MAP estimator) and integrals (for the posterior

mean) in order to extract actionable information from the Bayesian formulation

of inverse problems and data assimilation. For this reason, optimization (to

compute maxima) and sampling (to compute integrals) will play an important

role in these notes. In practice it is often useful to quantify the uncertainty in

the parameter reconstruction, and numerical summaries such as the posterior

mean and the MAP estimators can be complemented by credible intervals;

that is, parameter regions of prescribed posterior probability. In order to make

tractable the computation of estimators and credible intervals, the posterior can

be approximated by a simple distribution, such as a Gaussian or a Gaussian

mixture; optimization can be used to determine such approximations. In a similar

spirit, sampling may be viewed as approximating the posterior by a combination

of Dirac masses to enable computation of integrals. An optimization perspective

for inverse problems and data assimilation will be studied in Chapters 3 and

9, respectively, and Gaussian approximations will be discussed in Chapters 4

and 10, respectively; Dirac approximations constructed via sampling will be

studied in Chapters 5 and 6 (inverse problems) and in Chapters 11 and 12 (data

assimilation).

We next consider two simple examples of a direct application of Bayes’

theorem.

Example 1.5 (MAP and Posterior Mean Estimators) Let 𝑑 = 𝑘 = 1, 𝜂 ∼ 𝜈 =

N(0, 𝛾2), and let

𝜌(𝑢) =
{

1
2
, 𝑢 ∈ (−1, 1),

0, 𝑢 ∈ (−1, 1)𝑐 .

Suppose that the observation is generated by 𝑦 = 𝑢 + 𝜂. Using Bayes’ Theorem

1.2, we derive the posterior pdf

𝜋𝑦 (𝑢) =
{

1
2𝑍

exp(− 1
2𝛾2 |𝑦 − 𝑢 |2), 𝑢 ∈ (−1, 1),

0, 𝑢 ∈ (−1, 1)𝑐 ,

where 𝑍 is a normalizing constant ensuring that
∫
R
𝜋𝑦 (𝑢)𝑑𝑢 = 1. Now we find
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1.2 Formula for Posterior pdf: Bayes’ Theorem 7

the MAP estimator. From the explicit formula for 𝜋𝑦 , we have

𝑢MAP = arg max
𝑢∈R

𝜋𝑦 (𝑢) =




𝑦 if 𝑦 ∈ (−1, 1),
−1 if 𝑦 ≤ −1,

1 if 𝑦 ≥ 1.

In this example, the prior on 𝑢 is supported on (−1, 1) and the posterior on 𝑢 | 𝑦
is supported on (−1, 1). If the data lies in (−1, 1) then the MAP estimator is the

data itself; otherwise it is the extremal point of the prior support which matches

the sign of the data. The posterior mean is

𝑢PM =

1

2𝑍

∫ 1

−1

𝑢 exp
(
− 1

2𝛾2
|𝑦 − 𝑢 |2

)
𝑑𝑢,

which may be approximated using, for instance, the sampling methods described

in Chapters 5 and 6. ♦

The following example illustrates once again the application of Bayes’ theorem,

and shows that the posterior may concentrate near a low-dimensional manifold

in the input parameter space R𝑑 . In such a case it is important to understand the

geometry of the support of the posterior density, which cannot be captured by

point estimation or Gaussian approximations.

Example 1.6 (Concentration of Posterior on a Manifold) Let 𝑑 = 2, 𝑘 = 1,

𝜌 ∈ 𝐶 (R2,R), and suppose that there is 𝜌max > 0 such that, for all 𝑢 ∈ R2, we

have 0 < 𝜌(𝑢) ≤ 𝜌max < ∞. Suppose that the observation is generated by

𝑦 = 𝐺 (𝑢) + 𝜂,

𝐺 (𝑢) = 𝑢2
1 + 𝑢2

2,

𝜂 ∼ 𝜈 = N(0, 𝛾2), 0 < 𝛾 ≪ 1,

and assume that 𝑦 > 0. Using Bayes’ theorem we obtain the posterior pdf

𝜋𝑦 (𝑢) = 1

𝑍
exp

(
− 1

2𝛾2
|𝑢2

1 + 𝑢2
2 − 𝑦 |2

)
𝜌(𝑢).

We now show that the posterior concentrates near the manifold defined by the

circumference {𝑢 ∈ R2 : 𝑢2
1
+ 𝑢2

2
= 𝑦}. Denote 𝐴±

≔ {𝑢 ∈ R2 : |𝑢2
1
+ 𝑢2

2
− 𝑦 |2 ≤

𝛾2±𝛿}, for some fixed 𝛿 ∈ (0, 2). The set 𝐴− is defined so that it captures most

of the posterior probability, and 𝐴+ so that it captures little of the posterior

probability. They are defined this way because the observational noise has

variance 𝛾2; considering a neighborhood of the circumference which scales as 𝛾

raised to a power slightly smaller than 2 captures most of the posterior probability;

considering a neighborhood of the circumference in which the exponent is slightly
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8 Bayesian Inverse Problems and Well-Posedness

larger than this captures little of the posterior probability. Define 𝐵 to be the

closed ball of radius 2
√
𝑦 centered at the origin. Let 𝑢+ ∈ 𝐴+ ⊂ 𝐵, 𝑢− ∈ (𝐴−)𝑐

and let 𝜌min = inf𝑢∈𝐵 𝜌(𝑢). Since 𝜌(𝑢) is positive and continuous and 𝐵 is

compact, 𝜌min > 0. Taking the small noise limit yields

𝜋𝑦 (𝑢+)
𝜋𝑦 (𝑢−) ≥ exp

(
−1

2
𝛾 𝛿 + 1

2
𝛾−𝛿

)
𝜌min

𝜌max

→ ∞, as 𝛾 → 0+.

Therefore, noting that 𝑦 > 0, the posterior 𝜋𝑦 concentrates, as 𝛾 → 0+, on the

circumference with radius
√
𝑦. ♦

Figure 1.1 The posterior measure concentrates on a circumference with radius
√
𝑦.

Here, the blue shadow area is 𝐴+ and the green shadow area is (𝐴−)𝑐 .

1.3 Well-Posedness of Bayesian Inverse Problems

In this section we show that the Bayesian formulation of inverse problems leads to

a form of well-posedness. More precisely, we study the sensitivity of the posterior

pdf to perturbations of the forward model 𝐺. In many inverse problems the ideal

forward model 𝐺 is not accessible but can be approximated by some computable

𝐺 𝛿 ; consequently 𝜋𝑦 is replaced by 𝜋
𝑦

𝛿
. An example that is often found in

applications, to which the theory contained herein may be generalized, is when

𝐺 is an operator acting on an infinite-dimensional space which is approximated,

for the purposes of computation, by some finite-dimensional operator 𝐺 𝛿 . We

seek to prove that, under certain assumptions, the small difference between 𝐺

and 𝐺 𝛿 (forward error) leads to a similarly small difference between 𝜋𝑦 and 𝜋
𝑦

𝛿

(inverse error):
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1.3 Well-Posedness of Bayesian Inverse Problems 9

Meta Theorem (Well-Posedness)

|𝐺 − 𝐺 𝛿 | = 𝑂 (𝛿) =⇒ 𝑑 (𝜋𝑦 , 𝜋
𝑦

𝛿
) = 𝑂 (𝛿)

for small enough 𝛿 > 0 and some metric 𝑑 (·, ·) on probability densities.

This result will be formalized in Theorem 1.15 below, which shows that the

𝑂 (𝛿)-convergence of 𝜋
𝑦

𝛿
with respect to some distance 𝑑 (·, ·) can be guaranteed

under certain assumptions on the likelihood. We will conclude the chapter by

showing an example where these assumptions hold true. In order to discuss these

issues we will need to introduce metrics on probability densities.

1.3.1 Metrics on Probability Densities

Here we introduce the total variation and the Hellinger distance, both of which

have been used to show well-posedness results. In this chapter we will use the

Hellinger distance to establish well-posedness of Bayesian inverse problems, and

in Chapter 7 we employ the total variation distance to establish well-posedness

of Bayesian formulations of filtering and smoothing in data assimilation.

Definition 1.7 The total variation distance between two pdfs 𝜋 and 𝜋′ is

defined by

𝑑TV (𝜋, 𝜋′) ≔ 1

2

∫
|𝜋(𝑢) − 𝜋′(𝑢) |𝑑𝑢 =

1

2
‖𝜋 − 𝜋′‖𝐿1 .

The Hellinger distance between two pdfs 𝜋 and 𝜋′ is defined by

𝑑H (𝜋, 𝜋′) ≔
(1

2

∫
|
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢) |2𝑑𝑢

)1/2
=

1
√

2
‖
√
𝜋 −

√
𝜋′‖𝐿2 .

♦

In the rest of this subsection we will establish bounds between the Hellinger

and total variation distance, and show how both distances can be used to bound

the difference of expected values computed with two different densities; these

results will be used in subsequent chapters. Before doing so, the next lemma

motivates our choice of normalization constant 1/2 for total variation distance

and 1/
√

2 for Hellinger distance: they are chosen so that the maximum possible

distance between two densities is one. The proof also shows that 𝜋 and 𝜋′ have

total variation and Hellinger distance equal to one if and only if they have disjoint

supports; that is, if
∫
𝜋(𝑢)𝜋′(𝑢)𝑑𝑢 = 0.

Lemma 1.8 For any pdfs 𝜋 and 𝜋′,

0 ≤ 𝑑TV (𝜋, 𝜋′) ≤ 1, 0 ≤ 𝑑H (𝜋, 𝜋′) ≤ 1.
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10 Bayesian Inverse Problems and Well-Posedness

Proof The lower bounds follow immediately from the definitions, so we only

need to prove the upper bounds. For total variation distance,

𝑑TV (𝜋, 𝜋′) = 1

2

∫
|𝜋(𝑢) − 𝜋′(𝑢) |𝑑𝑢 ≤ 1

2

∫
𝜋(𝑢)𝑑𝑢 + 1

2

∫
𝜋′(𝑢)𝑑𝑢 = 1,

and for Hellinger distance,

𝑑H (𝜋, 𝜋′) =
(
1

2

∫ ���
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢)

���
2

𝑑𝑢

)1/2

=

(
1

2

∫ (
𝜋(𝑢) + 𝜋′(𝑢) − 2

√︁
𝜋(𝑢)𝜋′(𝑢)

)
𝑑𝑢

)1/2

≤
(1

2

∫ (
𝜋(𝑢) + 𝜋′(𝑢)

)
𝑑𝑢

)1/2

= 1.

�

The following result gives bounds between total variation and Hellinger

distance.

Lemma 1.9 For any pdfs 𝜋 and 𝜋′,

1
√

2
𝑑TV (𝜋, 𝜋′) ≤ 𝑑H (𝜋, 𝜋′) ≤

√︁
𝑑TV (𝜋, 𝜋′).

Proof From the Cauchy–Schwarz inequality it follows that

𝑑TV (𝜋, 𝜋′) = 1

2

∫ ���
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢)

���
���
√︁
𝜋(𝑢) +

√︁
𝜋′(𝑢)

���𝑑𝑢

≤
(
1

2

∫ ���
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢)

���
2

𝑑𝑢

)1/2 (
1

2

∫ ���
√︁
𝜋(𝑢) +

√︁
𝜋′(𝑢)

���
2

𝑑𝑢

)1/2

≤ 𝑑H (𝜋, 𝜋′)
(
1

2

∫ (
2𝜋(𝑢) + 2𝜋′(𝑢)

)
𝑑𝑢

)1/2

=

√
2𝑑H (𝜋, 𝜋′).

Notice that |
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢) | ≤ |

√︁
𝜋(𝑢) +

√︁
𝜋′(𝑢) | since

√︁
𝜋(𝑢),

√︁
𝜋′(𝑢) ≥ 0.
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