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The pinch technique at one loop

In this chapter, we present in detail the pinch technique (PT) construction at one

loop for a QCD-like theory, where there is no tree-level symmetry breaking (no

Higgs mechanism). The analysis applies to any gauge group (SU (N), exceptional

groups, etc.); however, for concreteness, we will adopt the QCD terminology of

quarks and gluons.

This introductory chapter and Chapter 2 go into both conventional technology

and the pinch technique only at the one-loop level. Here, the reader will find an

almost self-contained guide to the one-loop pinch technique with many calcula-

tional details plus some hints at the nonperturbative ideas used in later chapters

(where nonperturbative effects will be studied by dressing the loops, i.e., using a

skeleton expansion).

1.1 A brief history

Non-Abelian gauge theories (NAGTs) had been around for a long time when the

pinch technique came into play [1, 2, 3, 4]. Their first use was in defining the one-

loop PT gauge-boson propagator as a construct taken from some gauge-invariant

object by combining parts of conventional Feynman graphs while preserving gauge

invariance and other physical properties. The term pinch technique was introduced

later [4], in a paper that extended the one-loop pinch technique to the three-gluon

vertex. The name comes from a characteristic feature of the pinch technique, in

which the needed parts of some Feynman graphs look as though a particular propa-

gator line had been pinched out of existence. In all these early papers, only one-loop

phenomena were studied, including a one-dressed-loop Schwinger–Dyson equation

for the PT propagator. This equation showed how the infrared singularities arising

because of asymptotic freedom (= infrared slavery) require dynamical gluon mass

generation. Of course, the pinch technique should lead to unique results. These
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2 The pinch technique at one loop

considerations followed from five requirements for all PT Green’s functions not

involving ghosts:

1. All Green’s functions are independent of any gauge-fixing parameters.

2. All Green’s functions are independent of the particular S-matrix process

used to define them.

3. All Green’s functions obey Ward identities of QED type, not involving

ghosts.

4. All Green’s functions obey dispersion relations in which there are no iden-

tifiable ghost contributions or threshholds.

5. The discontinuities (imaginary parts) of Green’s functions can be calculated

with the usual Cutkosky rules, consistent with unitarity for the S-matrix.

All these are properties of Green’s functions in the background-field Feynman

gauge, later shown to be equivalent to the pinch technique.

One remark concerning the imaginary parts and unitarity is in order. The pho-

ton propagator of QED satisfies a Källen–Lehmann representation with a positive

spectral function, a property intimately related to the positivity of the beta func-

tion of QED. Because this beta function is negative for an asymptotically free

theory, it is impossible to find a NAGT gauge-boson propagator with a positive

spectral function, so unitarity holds in a generalized form, with some negative

contributions to spectral functions. However, as pointed out in Section 1.7, special

properties of the PT propagator allow its factorization into two terms, each obeying

the Källen–Lehmann representation.1 This factorization allows the rearrangement

of PT Schwinger–Dyson equations into a form in which all necessary positivity

constraints are realized.

At the beginning, how to extend the pinch technique to higher orders of pertur-

bation theory was far from clear; the pioneering technology defined in the first

papers would have been forbiddingly difficult for graphs with two or more loops.

Fortunately, the problem of the all-order pinch technique has a solution that can

be stated with remarkable simplicity: all that has to be done, as was shown [5, 6],

is to calculate conventional Feynman graphs using the background-field method-

ology [7] in the Feynman gauge. The original proof was for NAGTs such as

QCD, but it was extended [8] to all orders of electroweak theory. This work was

inspired by remarks [9, 10, 11] to the effect that the original pinch technique and

the background-field Feynman gauge gave exactly the same results at one loop in

perturbation theory. This, of course, could have been a coincidence without much

1 The product of two functions obeying the Källen–Lehmann representation need not obey it.
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1.2 Notation and conventions 3

meaning, but the all-order proof showed constructively how the PT requirements

were satisfied at all orders in the background-field Feynman gauge.2

In roughly the same time period, string-theory workers [12] studied the off-shell

extrapolation of string-theory amplitudes in the field theory, or zero Regge slope,

limit. By imposing a consistent implementation of modular invariance, these work-

ers showed that the off-shell gauge-theory amplitudes derived from string theory

were automatically given in the background-field Feynman gauge–equivalent to

the pinch technique.

The results showing the equivalence of the pinch technique and the background-

field Feynman gauge set the stage for nonperturbative applications of the pinch

technique, including the Schwinger–Dyson equations of the pinch technique and

their consequences. The output of any PT calculation is not only independence of

any gauge-fixing parameter but also freedom from contamination by unphysical

objects. For example, if one tries to find the contributions of gauge-invariant con-

densates such as 〈Tr GμνG
μν〉 to the usual gauge-boson propagator, one discovers

that they are inextricably bound with nonphysical and gauge-dependent conden-

sates involving the ghost fields. But for the PT propagator, only the gauge-invariant

condensate, field-strength condensate emerges; there are no ghost contributions

[13].

1.2 Notation and conventions

Unless explicitly stated otherwise, we adopt the conventions of Peskin and

Schröeder [14]. Sometimes, such as in Chapters 7–9 and parts of Chapter 11,

it is convenient to work in Euclidean space. The canonical gauge potential Aa
μ(x)

is often combined in the Hermitian matrix form

Aμ(x) = Aa
μ(x)ta, (1.1)

where ta are the SU (N) generators satisfying the commutation relations

[ta, tb] = if abctc, (1.2)

with f abc being the group’s totally antisymmetric structure constants. The genera-

tors are normalized according to

Tr(tatb) =
1

2
δab. (1.3)

In the case of QCD, the fundamental representation is given by ta = λa/2, where

λa are the Gell–Mann matrices.

2 And in no other background-field gauge; for other than the Feynman gauge, the original PT pinching rules
would have to be applied to the background-field Green’s functions to get those of the PT.
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4 The pinch technique at one loop

In Chapters 7, 8, and 9, dealing with nonperturbative phenomena, we combine the

gauge potentials in the anti-Hermitean matrix form

Aμ(x) = −igAa
μ(x)ta,

in which case the matrix potential has a unit mass dimension in all space-time

dimensions. The changes in all other definitions are trivial. This definition has

many advantages when we go beyond perturbation theory.

The Lagrangian density for a general SU (N) non-Abelian gauge theory is given

by

L = LI + LGF + LFPG. (1.4)

LI represents the gauge invariant Lagrangian, namely,

LI = −
1

4
Gμν

a Ga
μν + ψ̄ i

f

(

iγ μ
Dμ − m

)

ij
ψ

j

f , (1.5)

where a = 1, . . . , N2 − 1 (respectively, i, j = 1, . . . , N) is the color index for the

adjoint (respectively, fundamental) representation, and f is the flavor index. The

matrix-covariant derivative and field strength are defined according to

Dμ = ∂μ − igAμ (1.6)
[

Dμ,Dν

]

= −igGa
μν t

a, (1.7)

or, more explicitly,

(Dμ)ij = ∂μ(I )ij − igAa
μ(ta)ij (1.8)

Ga
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν, (1.9)

with g being the (strong) coupling constant. Under a local (finite) gauge transfor-

mation V = exp[−iθ ],

Aμ → V
i

g
∂μV † + V AμV †; Gμν → V GμνV

†; ψ → V ψ, (1.10)

from which the invariance of LI follows. In terms of infinitesimal local gauge

transformations,

δAa
μ = −

1

g
∂μθa + f abcθbAc

μ; δθψ
i
f = −iθa(ta)ijψ

j

f

δθ ψ̄
i
f = iθaψ̄

j

f (ta)j i, (1.11)

where θa(x) are the local infinitesimal parameters corresponding to the SU (N)

generators ta .
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1.2 Notation and conventions 5

To quantize the theory, the gauge invariance needs to be broken; this breakup is

achieved through a (covariant) gauge-fixing function Fa , giving rise to the (covari-

ant) gauge-fixing Lagrangian LGF and its associated Faddeev–Popov ghost term

LFPG. The most general way of writing these terms is through the Becchi–Rouet–

Stora–Tyutin (BRST) operator s [15, 16] and the Nakanishi–Lautrup multipliers

Ba [17, 18], which represent auxiliary, nondynamical fields that can be eliminated

through their (trivial) equations of motion. Then, one gets

LGF = −
ξ

2
(Ba)2 + Ba

F
a (1.12)

LFPG = −c̄asFa, (1.13)

where

δBRST
 = ǫs
, (1.14)

with ǫ being a Grassmann constant parameter and s being the BRST operator acting

on the QCD fields according to

sAa
μ = ∂μca + gf abcAb

μcc; sca = − 1
2
gf abccbcc

sψ i
f = igca(ta)ijψ

j

f ; sc̄a = Ba

sψ̄ i
f = −igcaψ̄

j

f (ta)j i ; sBa = 0. (1.15)

From the preceding transformations, it is easy to show that the BRST operator is

nilpotent: s2 = 0. In addition, as a result, the sum of the gauge-fixing and Faddev–

Popov terms can be written as a total BRST variation:

LGF + LFPG = s

(

c̄a
F

a −
ξ

2
c̄aBa

)

. (1.16)

This, of course, is expected because of the well-known property that total BRST

variations cannot appear in the physical spectrum of the theory, which in turn

implies the ξ independence of the S-matrix elements and physical observables.

As far as the gauge-fixing function is concerned, there are several possible choices.

The ubiquitous Rξ gauges correspond to the covariant choice

F
a
Rξ

= ∂μAa
μ. (1.17)

In this case, one has

LGF =
1

2ξ
(∂μAa

μ)2 (1.18)

LFPG = ∂μc̄a∂μca + gf abc(∂μc̄a)Ab
μcc; (1.19)
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6 The pinch technique at one loop

the Feynman rules corresponding to such a gauge are reported in the appendix.

One can also consider noncovariant gauge-fixing functions such as

F
a
n =

nμnν

n2
∂μAa

ν, (1.20)

where nμ is an arbitrary but constant four vector. In general, we can classify these

gauges by the different values of n2, i.e., n2 < 0 (axial gauges), n2 = 0 (light-cone

gauge), and finally, n2 > 0 (Hamilton or time-like gauge). Clearly, the gauge-fixing

form of Eq. (1.20) does not work for the light-cone gauge, which needs a separate

treatment, given in Section 1.6. In the other cases,

LGF =
1

2ξ (n2)2
(nμnν∂μAa

ν)2 (1.21)

LFPG =
nμnν

n2

[

∂μc̄a∂νc
a + gf abc(∂μc̄a)Ab

νc
c
]

. (1.22)

Notice that these noncovariant gauges, as well as the light-cone gauge, are ghost

free because the ghosts decouple completely from the S-matrix in dimensional

regularization.

Finally, because of the correspondence [9, 10, 11] between the PT and the particular

class of gauges known as background field gauges [7], the latter will be described

in depth in Chapter 2.

We end this section observing that when dealing with loop integrals, we will use

dimensional regularization and employ the shorthand notation

∫

k

≡ μǫ(2π )−d

∫

ddk, (1.23)

where d = 4 − ǫ is the dimension of space-time and μ is the ’t Hooft mass scale,

introduced to guarantee that the coupling constant is dimensionless in d dimensions.

In addition, the standard result,

∫

k

1

k2
= 0, (1.24)

will be used often to set various terms appearing in the PT procedure to zero.

1.3 The basic one-loop pinch technique

We begin with some notation for propagators and a special decomposition for the

free three-gluon vertex, a decomposition that also occurs in the background-field

method.
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1.3 The basic one-loop pinch technique 7

1.3.1 Origin of the longitudinal momenta

Consider the S-matrix element for the quark-quark elastic scattering process

q(p1)q(r1) → q(p2)q(r2) in QCD. We have that p1 + r1 = p2 + r2 and set q =

r2 − r1 = p1 − p2, with s = q2 being the square of the momentum transfer. The

longitudinal momenta responsible for triggering the kinematical re-arrangements

characteristic of the pinch technique stem either from the bare gluon propagator



(0)
αβ(k) or from the external bare (tree-level) three-gluon vertices, i.e., the vertices

where the physical momentum transfer q is entering.

To study the origin of the longitudinal momenta in detail, first consider the gluon

propagator 
αβ(k); after factoring out the trivial color factor δab, in the Rξ gauges,

it takes the form

i
αβ(q, ξ ) = Pαβ(q)
(q2, ξ ) + ξ
qαqβ

q4
, (1.25)

with Pαβ(q) being the dimensionless transverse projector, defined as

Pαβ(q) = gαβ −
qαqβ

q2
. (1.26)

The scalar function 
(q2, ξ ) is related to the all-order gluon, self-energy

�αβ(q, ξ ) = Pαβ(q)�(q2, ξ ), (1.27)

through


(q2, ξ ) =
1

q2 + i�(q2, ξ )
. (1.28)

Because �αβ has been defined in Eq. (1.28) with the imaginary factor i factored out

in front, it is simply given by the corresponding Feynman diagrams in Minkowski

space. The inverse of 
αβ can be found by requiring that


am
αμ(q, ξ )(
−1)

μβ

mb(q, ξ ) = δabgβ
α , (1.29)

and it is given by

−i
−1
αβ (q, ξ ) = Pαβ(q)
−1(q2, ξ ) +

1

ξ
qαqβ . (1.30)

At tree level,

i

(0)
αβ(q, ξ ) = d(q2)

[

gαβ − (1 − ξ )
qαqβ

q2

]

(1.31)

d(q2) =
1

q2
. (1.32)
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8 The pinch technique at one loop

Evidently, the longitudinal (pinching) momenta are proportional to the combination

λ = 1 − ξ and vanish for the particular choice ξ = 1 (Feynman gauge) so that the

free propagator is simply proportional to gαβd(q2). This is a particularly important

feature of the Feynman gauge, which, as we will see, makes PT computations much

easier. In this gauge, only longitudinal momenta from vertices can contribute to

pinching at the one-loop level. The popular case ξ = 0 (Landau gauge) gives rise

to a transverse 

(0)
αβ(k), which may have its advantages but really complicates the

PT procedure at this level.

Next, we consider the conventional three-gluon vertex, to be denoted by

Ŵamn
αμν (q, k1, k2), given by the following manifestly Bose-symmetric expression (all

momenta are incoming, i.e., q + k1 + k2 = 0):

iŴamn
αμν (q, k1, k2) = gf amnŴαμν(q, k1, k2) (1.33)

Ŵαμν(q, k1, k2) = gμν(k1 − k2)α + gαν(k2 − q)μ + gαμ(q − k1)ν .

This vertex satisfies the standard Ward identities:

qαŴαμν(q, k1, k2) = k2
2Pμν(k2) − k2

1Pμν(k1) (1.34)

k
μ

1 Ŵαμν(q, k1, k2) = q2Pαν(q) − k2
2Pαν(k2) (1.35)

kν
2Ŵαμν(q, k1, k2) = k2

1Pαμ(k1) − q2Pαμ(q). (1.36)

Unfortunately, the right-hand side is not the difference of inverse propagators, a

defect that shows up in higher orders as the appearance of ghost terms in the

identities, now called the Slavnov–Taylor identities.

But it is possible to decompose the vertex in a special way into two pieces, one

of which satisfies a Ward identity of an elementary (ghost-free) type and the other

contains the only longitudinal momenta capable of generating pinches [1, 19]. In

the general ξ gauge, this decomposition, as applied to the vertex of Figure 1.1(b),

is

Ŵμνα(q, k1, k2) = Ŵξ
μνα + ŴPξ

μνα, (1.37)

where

Ŵξ
μνα(q, k1, k2) = (k1 − k2)αgμν − 2qμgνα + 2qνgμα

+

(

1 −
1

ξ

)

[k2νgαμ − k1μgαν], (1.38)

and

ŴPξ
μνα(q, k1, k2) =

1

ξ
[k2νgαμ − k1μgαν]. (1.39)
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1.3 The basic one-loop pinch technique 9

(a) (c)

(e)

(b)

(d)

Figure 1.1. The diagrams contributing to the one-loop quark elastic scattering
S-matrix element. (a) box contributions, (b) non-Abelian and (c) Abelian vertex
contributions (two similar diagrams omitted), (d) quark self-energy corrections
(three similar diagrams omitted), and (e) gluon self-energy contributions.

It is easy to check that Ŵξ obeys the elementary Ward identity:

qαŴξ
μνα(q, k1, k2) = 
−1

μν (k2, ξ ) − 
−1
μν (k1, ξ ), (1.40)

and that ŴPξ is the only part of the vertex that triggers pinches. In the pinch

technique, (a trivial modification of) this ghost-free Ward identity holds to all

orders and has, as a consequence, as in QED, the equality of the gluon wave

function and vertex renormalization constants – a relation of great importance for

further developments. Note that the vertex Ŵξ
αμν(q, k1, k2) is Bose symmetric only

with respect to the μ and ν legs. Evidently, the preceding decomposition assigns a

special role to the q-leg, which is attached to two on-shell lines. In fact, this vertex

Ŵξ also occurs in the background-field method (see the appendix).3

It would be possible to carry out the (one-loop) PT manipulations with this vertex

decomposition for any ξ , but, just as for the propagator, things simplify in the

Feynman gauge, where a substantial part of Ŵξ vanishes. Because we will use this

gauge extensively, we record its vertex decomposition using the notation ŴF =

Ŵξ=1, ŴPξ=1 = ŴP. Then,

Ŵαμν(q, k1, k2) = ŴF
αμν(q, k1, k2) + ŴP

αμν(q, k1, k2), (1.41)

3 Actually, in both the pinch technique and the background-field method, there are two kinds of vertices; at the
one-loop level, only the one used here matters.
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10 The pinch technique at one loop

with

ŴF
αμν(q, k1, k2) = (k1 − k2)αgμν + 2qνgαμ − 2qμgαν, (1.42)

ŴP
αμν(q, k1, k2) = k2νgαμ − k1μgαν, (1.43)

and this allows ŴF
αμν(q, k1, k2) to satisfy the Ward identity

qαŴF
αμν(q, k1, k2) = (k2

2 − k2
1)gμν, (1.44)

where the right-hand side is the difference of two inverse propagators in the

Feynman gauge.

1.3.2 The basic pinch operation

The term pinch arises from the operation of longitudinal momenta, such as in ŴP, on

vertices, which triggers Ward identities that lead to the cancellation of a preexisting

propagator by an inverse propagator coming from the Ward identity. The resulting

graph looks like a Feynman graph from which one line has been removed, as if it

had been pinched out.

Whether acting on a vertex or a box diagram, as in Figure 1.1, the effect of the

pinching momenta, regardless of their origin (gluon propagator or three-gluon

vertex), is to trigger the elementary Ward identity

kνγ
ν = (/k + /p − m) − (/p − m), (1.45)

where the right-hand side (rhs) is the difference of two inverse tree-level quark

propagators. The first of these terms cancels (pinches out) the internal tree-level

fermion propagator S(0)(k + p), and the second term on the rhs vanishes when

hitting the on-shell external leg. Diagrammatically speaking, an unphysical effec-

tive vertex appears in the place where S(0)(k + p) was, i.e., a vertex that does not

appear in the original Lagrangian; as we will see, all such vertices cancel in the

full, gauge-invariant amplitude.

First of all, it is immediate to verify the cancellation of the ξ -dependent terms at

tree level. After extracting a kinematic factor of the form

iVaα(p1, p2) = ū(p1)igtaγ αu(p2), (1.46)

the tree-level amplitude reads

T
(0) = iVaα(r1, r2)i


(0)
αβ(q)iVaβ(p1, p2). (1.47)

Then, because the on-shell spinors satisfy the equations of motion

ū(p)(/p − m) = 0 = (/p − m)u(p), (1.48)
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