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The electromagnetic current and its properties

1.1 Introduction

The theory of the weak interactions, better known as the electroweak theory, was

developed in two stages. In the first stage, a phenomenological interaction was in-

troduced and was extended when additional experimental results became available.

At that stage a large number of observations could be accounted for by empirical

rules. There still remained the desire to develop a basic theory that was finite and

renormalizable. This was achieved in the second stage by combining the electro-

magnetic and weak interactions into a gauge theory – the electroweak theory.

The effective current–current interaction was introduced by Fermi in 1934,

Heff = 2 GF:
2

Jµ(x)Jµ†(x), (1.1)

and was responsible for charged-current weak interactions of leptons and hadrons.

The current was originally introduced, in analogy to electrodynamics, for the inter-

action of the electron with its neutrino and also for the neutron–proton transition

Jµ(x) = �νe
³µ(1 2 ³5)�e + �p³µ(1 2 ³5)�n + �νµ

³µ(1 2 ³5)�µ + · · ·.
(1.2)

Here the �s are the fields of the fermions and the ³ s are the Dirac ³ -matrices in the

notation of Bjorken and Drell (1965). The shortcoming of this theory is known as

the unitarity problem and shows up in many reactions. For example, for the reaction

νµ + e2 2³ νe + µ
2

we can calculate the cross section, which to lowest order is

Ãtot(νµe2 ³ νeµ
2) = G2

Fs

Ã
(1.3)
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4 The electromagnetic current and its properties

with s = 4E2
cm, where terms proportional to the masses of the leptons have been

omitted at high energies. Because of the point coupling in (1.1) only the lowest

partial wave (angular momentum zero) can contribute to the scattering amplitude.

Then conservation of probability (unitarity) in quantum mechanics requires (see

Problems 1 and 2 at the end of Chapter 2)

Ã l=0
inelastic f Ã

2E2
cm

(1.4)

for any scattering process. From (1.3) and (1.4) we find that the theory is consistent

with unitarity only for

Ecm f
(

Ã
:

2

4GF

)
1
2

= 309 GeV. (1.5)

Thus the theory is incomplete.

On the other hand, why should we believe the first-order-term result for such high

energies? It is not a matter of belief but an unfortunate fact of life that we cannot

calculate higher-order contributions. The theory, which is based on the Hamilto-

nian (1.1), is non-renormalizable and does not allow a well-defined perturbation

expansion.

At this point we fall back upon the most successful field theory at our disposal:

quantum electrodynamics (QED). We describe in this chapter its salient features

and we try to develop in Part II of this book, in analogy to QED, a gauge theory of

weak and electromagnetic interactions. In fact the second stage in the development

of the weak interactions is to construct a well-defined and renormalizable theory.

We start with the Dirac Lagrangian for an electron interacting with the electro-

magnetic field,

L = �

(

i³ µ "

"xµ
+ e³ µ Aµ 2 m

)

� 2 1

4
Fµ¿ Fµ¿. (1.6)

We think of � as the electron field whose current

jµ = �(x)³µ�(x) (1.7)

interacts with the electromagnetic field

LF = �(i³ µ"µ 2 m)� + ejµ Aµ. (1.8)

The interaction term e�³µ� Aµ fixes the vertex and the electron propagator is the

inverse of the kinetic term.
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1.1 Introduction 5

ieγµ

i

p−m + iε

Figure 1.1. The photon–fermion vertex and the propagator.

Finally, the last term in (1.6) gives the interaction between photons and involves

the electromagnetic field tensor

Fµ¿ = " A¿

"xµ
2 " Aµ

"x¿
. (1.9)

Gauge invariance forbids a term m2
³ Aµ Aµ that would give a mass to the photon.

QED has been one of the most precise and successful theories in all of physics and

has been tested to a few parts per million.

As mentioned above, the electromagnetic current describes the interaction of the

photon with a charged fermion. The current is a local operator

jµ(x) = �l(x)³µ�l(x), (1.10)

where �l(x) is the field for the lepton l and ³µ is a Dirac matrix. The current jµ(x)

is a generalization of the classical concept of a current as it appears in Maxwell’s

theory. In classical electrodynamics jµ(x) is a four-vector with components

jµ(x) =
[

cÃ(x), �j(x) = Ã(x)�v
]

= Ã(x)
[

c, �v
]

, (1.11)

with Ã(x) denoting the charge density, the vector �j(x) the charge flow, c the speed

of light, and �v the velocity of the charge density. The total charge of a particle is

given by the integral

c Q =
∫

d3x j0(x). (1.12)

The current in (1.11) is an operator that transforms like a four-vector. The fields

occurring above are also operators that create and destroy localized particle states.

They satisfy canonical commutation relations, which quantize the theory. The com-

putational methods of QED can be found in many books given in the references.

We shall assume that the reader is familiar with the methods of quantum electro-

dynamics.
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6 The electromagnetic current and its properties

1.2 The current for hadronic states

The electromagnetic current for a proton is more complicated since protons are not

point-like particles, but have a measurable physical size formed by the cloud of

pions and other hadrons which surrounds them. As a first attempt one would write

the electromagnetic current for a proton in terms of free fields,

Jµ = �p�(x)³µ�p(x) = u(p�)³µu(p)ei(p�2p)x. (1.13)

This form is ruled out immediately because it describes a point particle with unit

charge and a Dirac magnetic moment. It obviously fails for the case of a proton,

which has size and an anomalous magnetic moment. This implies a charge distri-

bution and requires additional terms on the right-hand side.

One therefore expects a more general structure, which is introduced by con-

sidering the hadronic current as a vector operator that satisfies general symmetry

principles. We begin by considering the interaction of the electromagnetic field

Aµ(x) with protons. The matrix element contains the term

�p�|Jµ(x)e2iqx|p�. (1.14)

Under translations in space and time Jµ(x) transforms as

Jµ(x) = ei p̂x Jµ(0)e2i p̂x , (1.15)

where p̂ is the operator of the four-momentum; thus (1.14) reduces to
∫

d4x�p�|Jµ(0)|p�e2i(q+p2p�)x = ū(p�)Oµ(p�, p)u(p)

∫

d4x e2i(q+p2p�)x ,

(1.16)

with Oµ containing terms with ³ -matrices, the antisymmetric tensor ·µ¿³´ , and

momenta. The spinors u(p) and u(p�) are solutions of the free Dirac equation.

These are the requirements of Lorentz invariance.

Two other properties are

(i) gauge invariance, which translates into

qµ�p�|Jµ(0)|p� = qµū(p�)0µu(p) = 0; (1.17)

(ii) Hermiticity of the current

�p�|Jµ(0)|p�7 = �p|Jµ(0)|p��,
(1.18)[

ū(p�)0µu(p)
]+ = ū(p)0µu(p�),

from which it follows that

O+
µ = ³0 Oµ³0. (1.19)
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1.2 The current for hadronic states 7

The above requirements limit the types of Dirac matrices and momenta which

are included in the operator Oµ. The first subset of operators is

{

�µ = pµ + p�
µ, qµ = p�

µ 2 pµ, ³µ, iÃµ¿q¿, Ãµ¿�
¿
}

, (1.20)

which appear in matrix elements of the vector current. In addition to the above

operators, there are also others that contain ³5 or the antisymmetric tensor. They

are produced by higher-order weak or new interactions and their contributions to

electromagnetic matrix elements are small. For completeness we include them here

and discuss some properties in the next section. The second subset of matrices

contains ³5,

{

�µ³5, qµ³5, ³µ³5, Ãµ¿q¿³5

}

, (1.21)

and the third the antisymmetric tensor,

{

·µ¿ ³´Ã³´�¿, ·µ¿ ³´Ã³´q¿, ·µ¿ ³´³µ³5q³�´, ·µ¿ ³´³¿q³�´

}

. (1.22)

These terms are odd under parity transformations. Matrix elements of these opera-

tors are not all linearly independent. For instance, matrix elements of the last three

terms in (1.22) are reduced, by judicious use of ³ -matrix identities and the Dirac

equation, to matrix elements of the second set (Nowakowski et al., 2005).

The Gordon decomposition formula

ū(p�)³ µu(p) = ū(p�)

(

p�µ + pµ

2m
+ iÃµ¿q¿

2m

)

u(p) (1.23)

eliminates one term in the first subset. Similarly, the term Ãµ¿�
¿ can be replaced

by ū(p�)qµu(p). Thus the matrix element of the vector current has the general

form

ū(p�)

(

³µF1(q2) + iÃµ¿q¿

2m
F2(q2) + qµF3(q2)

)

u(p). (1.24)

Gauge invariance gives an additional condition,

F3(q2) = 0. (1.25)

The functions Fi with i = 1, 2, 3 are Lorentz scalars and their argument must

remain unchanged under the replacement pµ ³ pµ + kµ and p�
µ ³ p�

µ + kµ with

kµ an arbitrary four-vector; consequently they are functions of q2 = (p� 2 p)2,

which justifies the argument introduced in Eq. (1.24). We can use the Hermiticity

condition as written in (1.19) to assure that the form factors are real functions.

In summary, symmetry principles restrict the number and properties of the form

factors. Some other consequences of symmetries are discussed in Chapter 2 and

the problems given there.
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8 The electromagnetic current and its properties

What is the physical meaning of form factors? As the name indicates, they

describe the structure or configuration of particles. Let us begin with an electron in

the Dirac theory. To lowest order of electrodynamics F1(0) = 1 and F2(0) = 0. On

replacing next the ³µ term with the help of the Gordon decomposition, the coupling

of the electron to the electromagnetic field Aµ(x) is written as

e�̄f(x)³µ Aµ(x)�i (x) = e�̄f(x)

(

pµ + p�
µ

2m
+ iÃµ¿q¿

2m

)

�i (x)Aµ(x). (1.26)

The non-relativistic limit produces two terms. The first term, from the sum of

momenta,

eū(p�)u(p)A0(x) (1.27)

couples the charge density to the scalar potential because the ratio of the three-

momentum to the mass becomes very small. The second term couples the magnetic

moment to an external magnetic field. Considering a constant magnetic field �B and

its potential Aµ(x), the interaction in configuration space is

e

2m
�̄f(x)Ãµ¿�i (x)

" Aµ(x)

"x¿
= �̄A,f(x)

e

2m
�Ã · �B �A,i , (1.28)

where �A are the upper components of the spinors (see Problem 2.5). The magnetic

field is introduced as the rotation of the vector potential. Defining the magnetic

moment as

�µ = 2g
e

2m
�S with �S = �Ã

2
, (1.29)

we obtain for the electron the gyromagnetic ratio g = 2. Thus a Dirac electron has

an intrinsic magnetic moment with the natural value of 2, which can be modified

by radiative corrections.

Although we have started to derive a current for extended fermions, the results of

this derivation in the form of Eqs. (1.27) and (1.29) are also valid for “point-like”

particles, when higher-order electromagnetic corrections are taken into account.

Indeed, the Lagrangian given in (1.6) will induce correction terms compatible with

the symmetries of the Lagrangian. We see from (1.23) and (1.24) that F2 will also

contribute to the magnetic moment via µ = 1
2
[F1(0) + F2(0)]. Both for the electron

and for the muon, the magnetic moments have been measured very accurately. They

have also been calculated theoretically and the agreement is very good. For the

electron

1

2
(g 2 2)e = 0.001 159 652 209 (31), (1.30)

with the number in parentheses denoting the experimental accuracy. Very accurate

results exist also for the muons. The deviation from the value of 2 comes from
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1.3 Parity-violating form factors 9

radiative corrections, which in quantum electrodynamics have been calculated pre-

cisely (Kinoshita, 1990).

The situation is very different for protons and neutrons. The experimental values

are

F1(0) = 1 and F2(0) = 1.79 for the proton, (1.31)

F1(0) = 0 and F2(0) = 21.91 for the neutron. (1.32)

The changes come from the strong interactions and cannot yet be calculated.

They are called the anomalous magnetic moments and have been measured in

electron–hadron-scattering experiments. In addition to their values at q2 = 0, the

form factors have been measured over extended regions of the momentum-transfer

squared and were found to decrease rapidly with q2. This behavior indicates the

existence of a charge distribution of virtual particles around the proton and the

neutron, with the charge density decreasing rapidly with increasing radius. The

motion of the particles creates magnetic fields, which are manifested in the values

of the magnetic moments.

1.3 Parity-violating form factors

For completeness we include additional couplings of the photon induced by weak

interactions inside the vertex. Omitting this section will not affect the study of the

following chapters.

The electromagnetic force is not the only force between particles. For instance,

the presence of weak terms changes the general structure of the electromagnetic

matrix elements. The interaction of a photon with a particle does not mean that

the whole process is electromagnetic, since higher-order corrections must also

include the weak interactions. Conceptually it is easy to include these effects in the

electromagnetic current, by dropping the restrictions that the current is invariant

under the discrete symmetries charge conjugation C, parity P, and time-reversal

T. Imposing Lorentz invariance, gauge invariance, and Hermiticity means that one

must include two additional form factors (F3 and F4) and the electromagnetic

current takes a more general form,

ū(p�)0µu(p) = ū(p�)

[

³µF1(q2) + i
Ãµ¿q¿

2m
F2(q2) + i

�µ¿³´Ã ³´q¿

4m
F3(q2)

+
(

qµ 2 q2

2m
³µ

)

³5 F4(q2)

]

u(p). (1.33)

We know from classical electrodynamics and quantum mechanics that the fields

transform under parity P and time-reversal T as shown in Table 1.1.
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10 The electromagnetic current and its properties

Table 1.1

�B P³ �B
�B T³ 2 �B
�E P³ 2 �E
�E T³ �E
�Ã P³ �Ã
�Ã T³ 2�Ã

From Table 1.1 we can infer immediately that �Ã · �B, an interaction defining

the second form factor F2(q2), conserves parity and time-reversal. Similarly, the

non-relativistic reduction of all form factors including F3(q2) and F4(q2) is given

by

Hint ? eA0 2 µ�Ã · �B 2 d �Ã · �E 2 a

[

�Ã ·
(

�' × �B 2 " �E
"t

)]

, (1.34)

with F1(0) = e (charge), [F1(0) + F2(0)] /(2m) = µ (magnetic dipole moment),

F3(0)/(2m) = d (electric dipole moment), and F4(0) ? a is called the anapole

moment (Zeldovich, 1958). It is evident that the presence of F3 leads to a parity-

and time-reversal-violating interaction. Physical phenomena that exhibit violation

of time-reversal are very scarce. Therefore, the observation of d �= 0 will be a

physical breakthrough. Up to now only upper limits for d have been established for

electrons and nucleons.

The fourth form factor F4(q2) is even under time-reversal but violates parity. It is

frequently omitted from discussions of the electromagnetic form factors, because

it is an off-shell form factor, in the sense that its interaction with an on-shell photon

vanishes. This is easily seen because q2 = 0 and ·µqµ = 0 for on-shell photons.

In addition, this form factor can appear only in matter with currents producing the

electromagnetic fields, because for classical fields the expression �' × �B 2 " �E/"t ,

which appears in the anapole interaction, vanishes (Maxwell equation in vacuum) in

the absence of a current. Finally, for neutral fermions, which do not carry any global

quantum numbers, like Majorana neutrinos, only the anapole form factor is possible.

For a more detailed treatment of the form factors I recommend Nowakowski et al.

(2005).
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2

The weak currents

2.1 The weak currents and some of their properties

The effective weak interaction in Eq. (1.1) was motivated by nuclear β-decays. For

many years this was the main theoretical framework for analyzing experiments.

As new experimental discoveries became available, the form of the interaction was

maintained but the current Jµ(x) was enlarged to incorporate the new observations.

At the end of the sixties the charged current J †
µ(x) included a leptonic and a hadronic

term,

J †
µ = l†µ(x) + h†

µ(x). (2.1)

The leptonic part of the current is

l†µ(x) = �e(x)³µ(1 2 ³5)�νe
(x) + �µ(x)³µ(1 2 ³5)�νµ

(x), (2.2)

with the first term corresponding to the electron and its neutrino and the second term

to the muon and its neutrino. Its space-time structure has a vector part analogous

to the electromagnetic current and an axial part introduced after the discovery of

parity violation. A direct calculation using the currents in (2.2) gives the µ-decay

spectrum, which is in good agreement with experiment. It also gives the decay rate

of the muon as

�(µ → e + νe + ν̄µ) =
Gµm5

µ

192Ã3
. (2.3)

From the observed decay rate and the mass of the muon the constant Gµ is deter-

mined to be

Gµ = (1.166 32 ± 0.000 04) × 10−5 GeV−2
. (2.4)

This determination includes the effects of radiative corrections, which in the

electroweak theory are finite and can be calculated precisely.
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