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Spin and helicity

Traditionally, in textbooks on quantum mechanics, spin is introduced via
an idealized Stern—Gerlach experiment in which a non-relativistic beam
of silver atoms passes through an inhomogeneous magnetic field. Each
atom is treated as a single valence electron of charge —e in an s-state. The
subsequent splitting of the beam into two indicates the two-valuedness
of s;, which is related to the value 1/2 for s, and the magnitude of the
splitting shows that the magnetic moment g is related to s by

e

n= ——S5,
mc

the proportionality factor (the gyromagnetic ratio) being twice as big as
the factor that classically gives the magnetic moment due to the orbital
angular momentum of a point charge.

Historically, however, it seems that the early Stern—Gerlach experiments,
begun in 1922, had no influence at all upon the discovery of spin, simply
because they were too imprecise. Rather, the concept of spin appeared
after a long and tedious battle to understand the splitting patterns and sep-
arations in line spectra. Several people had for various reasons discussed
classical models of rotating charge distributions but Kronig, in 1924, was
the first to show that an electron with spin 1/2 would explain the pattern
of what we would today call L - S splitting, as well as anomalies in the
Zeeman effect. He realized, though, that the gyromagnetic ratio (—e/mc)
needed for the latter would give L - S splittings twice as big as those
observed. It is said that Pauli expressed his negative reaction to Kronig’s
idea with such vehemence that Kronig never published his work (Mehra
and Rechenberg, 1982). Soon thereafter, in 1925, the same idea occurred
to Uhlenbeck and Goudsmit (1925), who proceeded to a detailed analysis
of the splittings, concluding at first that everything worked beautifully,
but then becoming aware, as a consequence of a comment by Heisenberg,
of the factor-of-2 inconsistency mentioned above.
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2 1 Spin and helicity

Some months later Thomas demonstrated that a careful relativistic
treatment produced exactly the factor of one half needed to bring about
agreement between the theory of L - S splitting and experiment (Thomas,
1926).

In this work appears for the first time the infamous ‘Thomas preces-
sion’, which is mentioned, yet almost never explained, in all textbooks
on quantum mechanics. We shall return to it later, but we should like,
immediately, to demistify one aspect of it. [t is usually said that relativistic
effects produce a factor of one half. Now that would indeed be mysterious!
What is forgotten is the fact that the L - S coupling is itself a relativistic
effect. By means of a Lorentz transformation, we can understand that the
electron, moving through the Coulomb field of the nucleus, sees a mag-
netic field in its rest frame. So the Thomas result is simply a correction to
an already intrinsically relativistic effect.

1.1 Spin and rotations in non-relativistic quantum mechanics

In non-relativistic quantum mechanics the spin of a particle is introduced
as an additional rotational degree of freedom. Analogously to orbital
angular momentum one introduces three spin operators

S§= (gmﬁyagz);

the spin states |sm) are the simultancous eigenstates of the commuting
operators §° and §,, with eigenvalues s(s + 1) and m respectively. The spin
s of the particle can be zero or a positive integer or half integer, while m
can take values —s < m < s in unit steps. The quantity m is referred to as
the ‘z-component of the spin’.

The three spin operators §; satisfy the usual angular momentum com-
mutation relations

[@j,@k] = iEjklﬁl. (1.1.1)

For a free particle the spin degree of freedom is totally decoupled from
the usual kinematic degrees of freedom, and this fact is implemented by
writing the state vector in the form of a product, one factor referring to

the usual degrees of freedom and the other to the spin degree of freedom.
Thus, for a particle of momentum p,

p;sm) = |p) ® [sm) (L.1.2)
or, equivalently, for the wave function,

Ypism(X) = @p(X)m) (1.1.3)

where #(n is a (2s 4 1)-component spinor and ¢y(x) is a standard
Schrédinger wave function.
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1.1 Spin and Rotations 3

Since the labelling of the above spin states uses m = §, and therefore
makes reference to ‘the z-direction’ it is tacitly assumed that we are
working in a well-defined, fixed coordinate reference system with origin
0.

We wish now to discuss the effect of rotations upon the spin states. To
begin with we recall the well-known rules for ordinary vectors. We shall
denote by r the physical operation of a rotation. Thus, if we say that an
object is rotated by e.g. r,(6), where 8 is positive, then we mean that we
are to physically push that object around the Z-axis through an angle 0
in the sense of a right-hand screw advancing along OZ.

If we apply r to a given three-dimensional vector A we shall call the
resultant rotated vector rA or A”. The action we have described is often
referred to in the literature as the ‘active’ point of view as distinct from the
‘passive’ one, in which the axis system is rotated. We think that this is a
confusing nomenclature. All our rotations act as described in the previous
paragraph and if we wish to rotate axes we shall simply state that r acts
on the coordinate axes.

The components of the rotated vector are related to the components A;
of A by

(rA); = Al = Ryj4; (1.1.4)
where the 3 x 3 matrix R with elements R;; depends, of course, on r.

Strictly speaking, we should write it as R(r). Sometimes it is convenient
to write the components 4; in the form of a column vector

Ax
A= 1|4, |, (L.1.5)
A;
in which case (1.1.4) can be written in matrix notation as
A" = RA. (1.1.6)

As an example, if r = r,(0) then

cosf O sin6
R [ry(H)] = 0 1 0 . (1.1.7)
—sinf@ 0 cosf

For a tensor T, say of rank 2, the components of the rotated tensor T"
will be given by

T}, = RiRjm Tim (1.1.8)

with obvious generalization to tensors of higher rank. It should be noted
that tensors of rank > 2 do not transform irreducibly under rotations. (The
irreducible representations of the rotation group are discussed briefly in
Appendix 1.)
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4 1 Spin and helicity

Often one wishes to utilize a set of three orthogonal unit ‘basis vectors’
e(; along the three coordinate axes. If we rotate one of them, say e(;), the
n components of e, will be related to those of e(;) by (1.1.4). But we can
also consider e{;) as a linear superposition of the e(;), and one easily shows
that

e = Rijeq) = (RT)ji €i) (1.1.9)

where RT is the transpose of the matrix R. (Recall that for rotations R is
orthogonal i.e. RTR = RRT =1))

Note that whereas R appears in (1.1.4) it is RT that occurs in (1.1.9).

We come now to the physical role of rotations. We are interested in the
relationship between the descriptions that different observers give to the
same physical phenomenon. Let A be a fixed vector, which observer O in
our fundamental reference system S describes as having components A4;.
Thus

A=Y A (1.1.10)
J

Let O be an observer using a reference system S” that has been rotated
from S by a rotation r. Using the basis vectors ef;, the observer describes
A as having components (A4;)g-. Thus

A= (A)sreq (1.1.11)
!

and via (1.1.9) one finds, using [R(r)] ' = R(r—1), that
(Ai)sr = Rijr 4, (1.1.12)

Although slightly misleading it is convenient to abbreviate (1.1.12) in
the form

(A)g = rtA. (1.1.13)

In summary, if the reference system is rotated by r then the components
of a fixed vector, as described in §” and in S, are related via R(r~!), in
contradistinction to (1.1.4) in which R is shorthand for R(r).

Spin-s spinors are dealt with in complete analogy to the above. We
introduce 2s + 1 unit basis spinors #»), where

1 0 0

0 1 0

0 0 0
sy =| - | =)y =1 - 1{> cees =y =1 - |5

0 0 0

0 0 1
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1.1 Spin and Rotations 5

the 75 represent eigenstates of 5,. We write for a general spinor
1= Lmlm); (1.1.14)
m

The numbers %, are the ‘components’ of X. The components (X,,)s- at-
tributed to the spinor X in the rotated reference frame S” are related to
X, analogously to (1.1.12):

(X)sr = 2 (1.1.15)

where the matrices 2(r) are the (2s + 1)-dimensional representation
matrices of the rotations r. (See Appendix 1; recall that the &£ are unitary
matrices, i.e. 279 = 1.) By analogy with the inverse of (1.1.9) we have

Hom) = D™ W (1.1.16)

The physical interpretation of (1.1.16) is that the state described by ob-
server O in the frame S as 7y is described by the rotated observer O’ as
a superposition of the states n(rm/).

Because of its importance we restate this in more general terms. If an
observer O with reference system S sees a spin s particle in a state |sm)
then the observer O" whose reference frame S” is rotated from S by the
rotation r describes the state of the particle as |sm)sr, where

|sm)gr = @ffl,)m(r_lﬂsm'). (1.1.17)

It is implicit in (1.1.17) that the states on the right-hand side are the |sm)
of O".

Although it is not simple to see what we mean by physically rotating

a spinor, by analogy with the vector case we shall talk about the active

rotation of a state |sm) to [sm)". Comparing with eqn (1.1.9) for the vector
case, we shall interpret |sm)" as given by

sm)" = 28 (r)|sm'). (1.1.18)

It is very convenient in quantum mechanics to represent the effect of an
operation by an operator acting directly on the state vectors. Thus we
rewrite (1.1.18) in the form

|sm)" = U(r)|sm) (1.1.19)

where U(r) is the operator representing the rotation r.
From (1.1.18) and (1.1.19) follows the well-known relation

ZY) (r) = (sm'|U(r)|sm). (1.1.20)
In this operator notation (1.1.17) becomes
lsm)sr = U(r™1)|sm). (1.1.21)
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6 1 Spin and helicity

In the case of spin 1/2, the spin operators §; when acting on the two-
dimensional spinors X'/2 are represented by the set /2 of 2 x 2 hermitian
matrices ¢;/2, the o; being the usual Pauli matrices. In the case of arbitrary
spin s the operators §; when operating on the (2541)-dimensional spinor x°
can similarly be represented by a set of three (2s+1)-dimensional hermitian
matrices Sj, the S; being the generalization of the Pauli matrices o;. There
is an important and vital distinction, however, between the ¢; and the §;,
which in a sense makes the spin-1/2 case unique. It is a fact that the most
general 2 x 2 hermitian matrix M can be specified by four independent
real parameters and, as a consequence, because the o; are hermitian and
independent, such a matrix M can always be written as

M =1l +b-q) (1.1.22)

where the factor 1/2 is for convenience, I is the unit matrix, b - ¢ is short
for bjo; and the four numbers a,b; are all real. The form of (1.1.22) is
particularly convenient since it is trivial to solve for a and b;. One has

a=Tr M, bj =Tr (o;M) (1.1.23)

where Tr = trace means the sum of the diagonal elements of the matrix.

The Pauli ¢; thus play a dual role. On the one hand, they represent
the spin operators 5;; on the other they furnish a basis for expressing any
2 x 2 hermitian matrix. It is the confusion of these two roles that sometimes
leads to difficulties in understanding spin effects in relativistic situations.

In the case of higher spin s the most general hermitian matrix is specified
by (2s+ 1)? real parameters, so the set of the three S ; matrices is far from
adequate as a basis for an expansion analogous to (1.1.22).

The special role of spin 1/2 shows itself in yet another way. The most
general two-component spinor X can be specified by four-real parameters,
of which one, the overall phase, is totally irrelevant.

If, further, the spinor is normalized to unity, i.e.

=1,

we are left with two independent real parameters. Thus we can write,
without loss of generality,

lg ,~ip/2
coss0 e
- < oty o ) (1.1.24)

If now we compute the spin-polarization vector P, defined by
P, ={e), =2Tax (1.1.25)
we shall find that
P, = (sin 0 cos ¢, sin 0 sin ¢, cos ) (1.1.26)
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1.2 Spin and helicity in a relativistic process 7

with ’P% = 1. We see trivially that a knowledge of P, completely specifies
the quantum state X. In the case of higher spin, one can still define a
spin-polarization vector for a state X such that

Pr=@)/s=sy/s (1.1.27)

where s is the mean spin vector, but now the three components of P
are insufficient to fix the 2(2s + 1) — 2 independent parameters of the
(25 + 1)-dimensional spinor X. Besides the case of spin 1/2 there is no
other situation in nature where a knowledge of the spin-polarization
vector completely specifies the quantum state. (Of course P and s are
really pseudovectors. P is commonly referred to as the polarization vector
but it is not at all the same thing as the polarization vector & used in
the description of photons or massive spin-1 particles. For this reason we
shall refer to it as the spin-polarization vector.)

Finally we note a very important property of the matrices S; representing
the spin operator §; for spin s, namely that they ‘transform as vectors under
rotation’. More precisely:

29829 (r) = R, 1)S;. (1.1.28)

This relation is best known in the spin-1/2 case in the simpler looking,
but really equivalent, form

(61)gr = Rij(r™") (o) (1.1.29)

relating expectation values in S” to those in S.

1.2 Spin and helicity in a relativistic process

The pioneering work of Dirac (1927) showed that spin emerges automat-
ically in a relativistic theory and that it could no longer be treated as an
independent additional degree of freedom. Nevertheless it is not trivial
to see precisely how the spin is to be described relativistically, nor how
it is to be interpreted physically. We shall give a brief discussion of this
question, and then turn to consider the helicity states of Jacob and Wick
(1959). Here our emphasis will be upon the physical interpretation and is
somewhat complementary to the approach used by other authors.

We assume that the reader has some familiarity with homogeneous and
inhomogeneous Lorentz transformations. A clear account can be found
in Gasiorowicz (1967).

In a relativistic quantum theory the fundamental operators are the
generators of the inhomogeneous Lorentz transformations. There are 10 of
these. The three momentum operators PJ and the hamiltonian operator PO
generate translations in space and time respectively, and the six operators
M”V(: —M V#) generate the homogeneous Lorentz transformations. It
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8 1 Spin and helicity

is physically more revealing to work not with the M® but with the
combinations

Ji=—lepbi*,  Ky= MY, (1.2.1)
which can be shown to be the generators of pure rotations and of pure
Lorentz transformations (‘boosts’) respectively. Thus the J; are identified
as the total angular momentum operators.

As a consequence of the inherent characteristics of the inhomogeneous
Lorentz transformations, one can derive commutation relations that must
be satisfied by the generators. In particular, and in accordance with the

interpretation of the J; as angular momentum operators, one naturally
finds

[jj, jk] = iejkljl- (1.2.2)

The operator f’,j’“ is invariant, i.e. it commutes with all the generators
and its eigenvalues can thus be used to label states. Indeed, what we mean
when we talk of an elementary particle of mass m is nothing other than
matter that is an eigenstate of P,P* with eigenvalue m2.

The question that now arises is the following. If the theory already
contains the spin then which operators are to be identified as the spin
operators? Is there a set of operators §;, with commutation relations akin
to eqn (1.2.2)?

The nearest one can get to a covariant spin operator is the set of
Pauli-Lubanski operators W, defined as follows:

W, = —Leppo M™ PP (1.2.3)
(with €p123 = +1), whose commutation relations can be shown to be
(Wi, Wo| = iesppo WPP”. (1.2.4)

These are not quite what we hoped for, but we notice that if we consider
the action of these operators on states of momentum p = 0, i.e. on ‘rest’
states, then for the space parts of the commutation relations (1.2.4) one

will have
[VAV]', Wk] = ifjpr me = —imejkl Wl. (1.2.5)
Thus, for the case m # 0 the three operators
|
§=—W' (1.2.6)
m
have the commutation relations
[ﬁj, §k] = ifjklgl (127)

provided they act on the states of particles at rest.
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1.2 Spin and helicity in a relativistic process 9

Further, the operator W# W is invariant' and its eigenvalues, as can be
deduced from(1.2.4)—(1.2.7), are of the form m?s(s + 1) with s =0, %, 1,...
It is the number s that is defined as the ‘spin’ of a particle in a relativistic
theory.

In summary, in a relativistic theory a particle is assigned an invariant
spin quantum number s. But only when the particle is at rest can one
identify a set of spin operators §; and proceed to invoke the usual formal-
ism of non-relativistic quantum mechanics. Indeed from (1.2.3) one sees

that when VAVH acts upon a particle at rest it has the form

A

m A
v
We = _EeuVOO'M'u

or, from (1.2.1)
Wi =ml. (1.2.8)

Thus the §; when acting on states at rest are just the .7,-, so that all the
rotational properties of non-relativistic spin hold for particles at rest. The
possibility that a particle at rest has non-zero total angular momentum
has emerged automatically.

For a particle at rest it is convenient to fix a reference frame and then
to classify the states of the particle as in the non-relativistic case, i.e.
using eigenstates |ss,) of §* and §,. For a particle in motion, however, the
labelling of the states is not so clear cut.

The standard approach is to generate states of arbitrary momentum
by acting upon the rest states with suitable Lorentz transformations. We
shall adopt an equivalent but more physical approach, considering Lorentz
transformations in a similar spirit to our discussion of rotations in Section
1.1.

We denote an arbitrary physical Lorentz transformation by I. We con-
tinue to denote physical rotations by r, and we denote by I;, j = x,y,z,
physical pure Lorentz transformations (‘boosts’) along the axes. We re-
mind the reader that care must be taken when specifying a sequence of
operations acting on the reference system. For example, if we first rotate
a system S about its Y axis through angle 6 (call this frame S’) and then
boost to a new frame S” moving with speed v along the Z-axis of S’, then
we should represent the complete transformation from S to S” as

S > 8" = Li(v)ry(0)S;

it is essential for clarity to use the primed label z’ on [. A pure Lorentz
transformation or boost in an arbitrary direction is denoted by I(v), where

1 W# W and ﬁﬂﬁ” are the only invariant operators of the inhomogeneous Lorentz group.
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10 1 Spin and helicity

conventionally
I =[] " L)), (1.2.9)

Here r(v) is the rotation about e(;) x v that rotates the Z-axis into the
direction of v and (»~1(v))” is its inverse, applied to the boosted frame.
We shall refer to (1.2.9) as a canonical boost.

The reason for calling (1.2.9) a pure boost is clear from Fig. 1.1, which
shows (for the case of v lying in the XZ plane) that the final reference
system S’ has its Z-axis at the same angle 0 to v as did OZ of S.

If a 4-vector A is acted upon by a physical Lorentz transformation !
then it is transformed to a new vector, which we shall denote by [4 or A;.
Its components are related to those of A by

(A = A" = A*, (DA’ (1.2.10)

When using matrix notation we shall denote by A the 4 x 4 matrix whose
elements are A*,, u referring to the row, v to the column. The column
matrix A4 is defined to have as components the contravariant components
AY. Thus (1.2.10) reads as

A = A()A

Explicit forms for A#, for a few cases of special importance follow. If /
is simply a rotation r, then we have

1 0 0O
A=Y (1.2.11)
_ 0 R . .
0
where R is the matrix defined in (1.1.4).
X”\
Il\
57N
X
“ v i
z .
Xl 'f"
* v~
\
S’\\\
A 4 » 7

Fig. 1.1. A canonical boost along v to S — S as shown.
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