QUANTIZED DETECTOR NETWORKS

Scientists have been debating the meaning of quantum mechanics for over a century. This book for graduate students and researchers gets to the root of the problem: the contextual nature of empirical truth, the laws of observation, and how these impact on our understanding of quantum physics. Bridging the gap between nonrelativistic quantum mechanics and quantum field theory, this novel approach to quantum mechanics extends the standard formalism to cover the observer and their apparatus. The author demystifies some of the aspects of quantum mechanics that have traditionally been regarded as extraordinary, such as wave–particle duality and quantum superposition, by emphasizing the scientific principles. Including key experiments and worked examples throughout to encourage the reader to focus on empirically sound concepts, this book avoids metaphysical speculation and alerts the reader to the use of computer algebra to explore quantum experiments of virtually limitless complexity. This title, first published in 2017, has been reissued as an Open Access publication on Cambridge Core.

GEORGE JAROSZKIEWICZ is a mathematical physicist recently retired from the School of Mathematical Sciences, University of Nottingham. His research interests are focused on the fundamental differences between quantum and classical mechanics.

Cambridge University Press & Assessment 978-1-009-40145-6 - Quantized Detector Networks George Jaroszkiewicz Frontmatter More Information

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

- S. J. Aarseth Gravitational N-Body Simulations: Tools and Algorithms[†]
- J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach[†]

A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics

- J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics[†] O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems[†]
- B. Babelon, D. Bernard and M. Talon Introduction to Constant Integrate Systems F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved Space[†] D. Baumann and L. McAllister Inflation and String Theory
- V. Belinski and M. Henneaux The Cosmological Singularity[†]
- V. Belinski and E. Verdaguer Gravitational Solitons
- J. Bernstein Kinetic Theory in the Expanding Universe[†]

- G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems[†]
 N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space[†]
 K. Bolejko, A. Krasiński, C. Hellaby and M.-N. Célérier Structures in the Universe by Exact Methods: Formation, Evolution, Interactions
- D. M. Brink Semi-Classical Methods for Nucleus-Nucleus Scattering[†]
- M. Burgess Classical Covariant Fields[†]
- E. A. Calzetta and B.-L. B. Hu Nonequilibrium Quantum Field Theory
 S. Carlip Quantum Gravity in 2+1 Dimensions[†]
 P. Cartier and C. DeWitt-Morette Functional Integration: Action and Symmetries[†]
- J. C. Collins Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion
- P. D. B. Collins An Introduction to Regge Theory and High Energy Physics[†]
- M. Creutz Quarks, Gluons and Lattices
- P. D. D'Eath Supersymmetric Quantum Cosmology[†]
- J. Dereziński and C. Gérard Mathematics of Quantization and Quantum Fields F. de Felice and D. Bini Classical Measurements in Curved Space-Times
- F. de Felice and C. J. S Clarke Relativity on Curved Manifolds[†]
 B. DeWitt Supermanifolds, 2nd edition[†]
- P. G. O. Freund Introduction to Supersymmetry[†]
- F. G. Friedlander The Wave Equation on a Curved Space-Time[†]
- J. L. Friedman and N. Stergioulas Rotating Relativistic Stars Y. Frishman and J. Sonnenschein Non-Perturbative Field Theory: From Two-Dimensional Conformal Field Theory to QCD in Four Dimensions
- J. A. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory
- J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for $Physicists^{\dagger}$ Y. Fujii and K. Maeda The Scalar-Tensor Theory of Gravitation[†]

- J. A. H. Futterman, F. A. Handler, R. A. Matzner Scattering from Black Holes[†] A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev Harmonic Superspace[†] R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity[†]
- T. Gannon Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics
- A. García-Díaz Exact Solutions in Three-Dimensional Gravity

- M. Göckeler and T. Schücker Differential Geometry, Gauge Theories, and Gravity[†]
 C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics[†]
 M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 1: Introduction
 M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 2: Loop Amplitudes,
- Anomalies and Phenomenology
- V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics[†]
- J. B. Griffiths and J. Podolský Exact Space-Times in Einstein's General Relativity S. W. Hawking and G. F. R. Ellis The Large Scale Structure of Space-Time[†]
- F. Iachello and A. Arima The Interacting Boson Model[†] F. Iachello and P. van Isacker The Interacting Boson-Fermion Model[†]
- C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 1: From Brownian Motion to
- Renormalization and Lattice Gauge Theory C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 2: Strong Coupling, Monte Carlo
- Methods, Conformal Field Theory and Random Systems[†]
- G. Jaroszkiewicz Principles of Discrete Time Mechanics G. Jaroszkiewicz Quantized Detector Networks
- C. V. Johnson D-Branes[†]

- P. S. Joshi Gravitational Collapse and Spacetime Singularities[†]
- J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd edition
- V. E. Korepin, N. M. Bogoliubov and A. G. Izergin Quantum Inverse Scattering Method and Correlation Functions

- J. Kroon Conformal Methods in General Relativity M. Le Bellac Thermal Field Theory[†] Y. Makeenko Methods of Contemporary Gauge Theory[†] S. Mallik and S. Sarkar Hadrons at Finite Temperature
- N. Manton and P. Sutcliffe Topological Solitons
- N. H. March Liquid Metals: Concepts and Theory
- I. Montvay and G. Münster Quantum Fields on a Lattice[†]
- P. Nath Supersymmetry, Supergravity, and Unification L. O'Raifeartaigh Group Structure of Gauge Theories[†]
- A. M. Oravity and Strings, 2nd edition
 A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization[†]
- M. Paranjape The Theory and Applications of Instanton Calculations
- L. Parker and D. Toms Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity
- R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields[†]
- R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry
- S. Pokorski Gauge Field Theories, 2nd edition[†]
- J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String[†] J. Polchinski String Theory Volume 2: Superstring Theory and Beyond[†] J. C. Polkinghorne Models of High Energy Processes[†] V. N. Popov Functional Integrals and Collective Excitations[†]

- V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
 S. Raychaudhuri and K. Sridhar Particle Physics of Brane Worlds and Extra Dimensions
- A. Recknagel and V. Schiomerus Boundary Conformal Field Theory and the Worldsheet
- Approach to D-Branes
- R. J. Rivers Path Integral Methods in Quantum Field Theory[†] R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering[†] C. Rovelli Quantum Gravity[†]

- W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems[†]
 R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
 M. Shifman and A. Yung Supersymmetric Solitons
- H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein's Field Equations, 2nd edition[†]
- J. Stewart Advanced General Relativity[†]
- J. C. Taylor Gauge Theories of Weak Interactions[†]
- T. Thiemann Modern Canonical Quantum General Relativity[†]

- R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory[†]
 E. J. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics[†]
- [†] Available in paperback

Quantized Detector Networks

The Theory of Observation

GEORGE JAROSZKIEWICZ

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009401456

DOI: 10.1017/9781009401432

© George Jaroszkiewicz 2017, 2023

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009401432 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given. You may not distribute derivative works without permission. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009401432

First published 2017 Reissued as OA 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-40145-6 Hardback ISBN 978-1-009-40142-5 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-40145-6 — Quantized Detector Networks George Jaroszkiewicz Frontmatter <u>More Information</u>

Contents

Preface Acronyms		page xv xviii
1	Introduction	1
1.1	Motivation	1
1.2	Physics, Not Metaphysics	3
1.3	A Brief History of Quantum Interpretation	6
1.4	Plan of This Book	9
1.5	Guidelines for Reading This Book	10
1.6	Terminology and Conventions	11
2	Questions and Answers	13
2.1	What Is Physics?	13
2.2	Physics and Time	14
2.3	Reduction versus Emergence	16
2.4	Peaceful Coexistence	17
2.5	Questions and Answer Sets	18
2.6	Answer Set Collapse	19
2.7	Incompatible Questions and Category Errors	21
2.8	Propositions	22
2.9	Negation, Context, Validation	23
2.10	Proof of Negation	24
2.11	A Heretical View of Reality	25
2.12	Generalized Propositions and Their Classification	25
3	Classical Bits	28
3.1	Binary Questions	28
3.2	Question Cardinality	28
3.3	Classical Binary Questions	29
3.4	Classical Bits	29
3.5	Signal Bits	30
3.6	Nodes	31
3.7	Dual Bits	32
3.8	The Interpretation of Bits and Their Duals	32

viii	Contents	
3.0	Matrix Representation	33
3.10	Classical Bit Operators	33
3 11	Labstates	34
3.12	Time and the Stages Concept	35
3.13	Stage Diagrams	38
3.14	Measurements and Observations	38
3.15	Transtemporal Identity	39
3.16	Typical Experiments	40
3.17	Rank-One Stochastic Evolution	42
3.18	Stochastic Bits	43
3.19	Left-Stochastic Matrices	44
3.20	Stochastic Jumps	44
3.21	Stochastic Questions	45
4	Quantum Bits	46
- 1	Quantum Bits	46
4.2	Preferred Bases	46
4.3	Qubit Properties	47
4.4	Qubit Operators	48
4.5	Signal Bit Operators	50
4.6	The Standard Born Interpretation	50
4.7	The Born Interpretation in QDN	53
4.8	Classical and Quantum Ensembles	53
4.9	Basis Transformations	54
4.10	The Preferred Basis Problem	55
4.11	Rank-One Qubit Evolution	57
4.12	Mixed Qubit States	58
4.13	Density Operators	58
5	Classical and Quantum Registers	60
5.1	Introduction	60
5.2	Labels versus Ordering	60
5.3	The Signal Basis Representation	61
5.4	Maximal Questions	62
5.5	Signality	63
5.6	The Economy of Success	64
5.7	Quantum Registers	65
5.8	The Computational Basis Representation	66
5.9	Register Operators	67
5.10	Classical Register Operators	68
5.11	The Signal Algebra	69
5.12	Signal Excitations	70
5.13	Signality Classes	71

	Contents	ix
5.14	Binary Decomposition	72
5.15	Computational Basis Representation for Signal Operators	73
6	Classical Register Mechanics	75
6.1	Introduction	75
6.2	Classical Registers	76
6.3	Architecture	76
6.4	Permutation Flows	79
6.5	Signality-Conserving Flows	81
6.6	Evolution and Measurement	82
6.7	Random Initial States	83
7	Quantum Register Dynamics	84
7.1	Introduction	84
7.2	Persistence	84
7.3	Quantized Detector Networks	85
7.4	Persistence and Ensembles	88
7.5	Observers and Time	89
7.6	The Born Probability Rule	90
7.7	Principles of QDN Dynamics	92
7.8	Born Maps and Semi-unitarity	93
7.9	Application to Dynamics	94
7.10	The Signal Theorem	97
7.11	Null Evolution	100
7.12	Path Summations	102
8	Partial Observations	105
8.1	Introduction	105
8.2	Observables	105
8.3	Maximal Questions	107
8.4	Partial Questions	109
8.5	Partial Question Eigenvalues	110
8.6	Identity Classes	111
8.7	Needles in Haystacks	112
9	Mixed States and POVMs	114
9.1	Introduction	114
9.2	Sets and Measures	115
9.3	Hilbert Spaces	116
9.4	Operators and Observables	116
9.5	Trace	117
9.6	Projection-Valued Measure	117
9.7	Mixed States	118

х	Contents	
9.8	Partial Trace	119
9.9	Purification	120
9.10	Purity and Entropy	121
9.11	POVMs	122
9.12	Naimark's Theorem	123
9.13	QDN and POVM Theory	124
10	Double-Slit Experiments	131
10.1	Introduction	131
10.2	Run Protocol	132
10.3	Baseball in the Dark	133
10.4	Observed Phenomena	134
10.5	A Wave-Mechanics Description	136
10.6	The QDN Account of the Double-Slit Experiment	138
10.7	Contextual Subspaces	141
10.8	The Sillitto–Wykes Variant	142
10.9	The Monitored Double-Slit Experiment	143
11	Modules	148
11.1	Modules	148
11.2	The Vacuum	149
11.3	The Wollaston Prism	150
11.4	The Newtonian Prism	152
11.5	Nonpolarizing Beam Splitters	157
11.6	Mirrors	160
11.7	Phase Changers	160
11.8	Polarization Rotators	160
11.9	Null Modules	161
12	Computerization and Computer Algebra	162
12.1	Introduction	162
12.2	Program MAIN	163
12.3	The Wollaston Interferometer	165
12.4	Going to the Large Scale	169
12.5	Prospects	171
13	Interferometers	172
13.1	Introduction	172
13.2	The Mach–Zehnder Interferometer	172
13.3	Brandt's Network	174
13.4	The Two-Photon Interferometer	176

Contents	xi
14 Quantum Eraser Experiments	179
14.1 Introduction	179
14.2 Delayed-Choice Quantum Eraser	181
14.3 Which-Path Measure	185
14.4 Wheeler's Double-Slit Delayed Choice Experiment	186
14.5 The Delayed Choice Interferometer	189
14.6 The Double-Slit Quantum Eraser	190
14.7 Concluding Remarks	197
15 Particle Decays	198
15.1 Introduction	198
15.2 One Species Decays	200
15.3 The Quantum Zeno Effect	205
15.4 Matrix Analysis	207
15.5 The Ammonium System	209
15.6 Kaon-type Decays	212
16 Nonlocality	217
16.1 Introduction	217
16.2 Active and Passive Transformations	221
16.3 Local Operations	225
16.4 Primary and Secondary Observers	226
16.5 Subregister Bases	228
16.6 Local and Remote Evolution	229
16.7 The No-Communication Theorem	229
17 Bell Inequalities	232
17.1 Introduction	232
17.2 The Stern–Gerlach Experiment	235
17.3 Circumventing the Simultaneity Problem	241
17.4 The Standard Quantum Calculation	244
17.5 The QDN Calculation	247
18 Change and Persistence	250
18.1 Introduction	250
18.2 Comparisons	255
18.3 Signal Correlation Measure of Change	259
19 Temporal Correlations	263
19.1 Introduction	263
19.2 Classical Bit Temporal Correlations	264

xii	Contents	
19.3	The Classical Leggett–Garg Inequality	265
19.4	Qubit Temporal Correlations	266
19.5	QDN Spin Correlation	267
19.6	The Leggett–Garg Correlation	268
19.7	Understanding the Leggett–Garg Prediction	268
20	The Franson Experiment	271
20.1	Introduction	271
20.2	The Franson Experiment	271
20.3	FRANSON-1: $\Delta T \ll \tau_2$	273
20.4	FRANSON-2: $\tau_1 \ll \Delta T$	274
20.5	FRANSON-3: $\tau_2 \ll \Delta T \ll \tau_1$	277
20.6	Conclusions	278
21	Self-intervening Networks	279
21.1	Introduction	279
21.2	Experiment SI-1: Basic Self-intervention	284
21.3	Experiment SI-2: Double Self-intervention	285
21.4	Experiment SI-3: Interfering Single Self-intervention	286
21.5	Schrödinger's Cat	287
22	Separability and Entanglement	291
22.1	Introduction	291
22.2	Quantum Registers	291
22.3	Splits	293
22.4	Partitions	294
22.5	Quantum Zipping	298
23	Causal Sets	299
23.1	Introduction	299
23.2	Causal Sets	302
23.3	QDN and Causal Sets	303
23.4	Quantum Causal Set Rules	304
23.5	Case Study 1: The Double-Slit Experiment	305
23.6	Case Study 2: The Monitored Double-Slit Experiment	306
23.7	Case Study 3: Module Causal Set Structure	307
24	Oscillators	309
24.1	Introduction	309
24.2	The Classical Oscillator Register	310
24.3	Quantization	314
24.4	Bosonic Operators	315
24.5	Quantum Register Oscillator Operators	317

	Contents	xiii
24.6 Compar	ison with Quantum Field Theory	319
24.7 Fermion	ic Oscillators	320
25 Dynami	cal Theory of Observation	322
25.1 Introduc	ction	322
25.2 Power E	Bits	323
25.3 Power E	Bit Operators	325
25.4 Matrix	Representation	325
25.5 Special	Operators	326
25.6 The Lab	poratory	328
25.7 The Unit	iversal Register	329
25.8 Context	ual Vacua	330
25.9 Experim	nents	332
25.10 Quantiz	ation	335
25.11 The Elit	tzur–Vaidman Bomb-Tester Experiment	335
25.12 The Ha	rdy Paradox Experiment	339
25.13 Implicat	tions and Comments	342
26 Conclus	ions	343
Appendix		345
A.1 QDN N	otation	345
A.2 Lab Tin	ne and Frame Fields	346
A.3 Lab Tin	ne and Stages	346
A.4 Ensemb	les	348
A.5 Vector S	Spaces	350
References		357
Index		365

Preface

In a routine optical telescope scan of a distant galaxy, astronomer Alice saw nothing unusual. Her radio astronomer colleague Bob, however, reported intense radio activity in that galaxy. Who had the true view of the galaxy?

This is the sort of question discussed in this book. If you said that Bob had the "true" view of the galaxy, you would be quite normal. *Normal*, in the sense of *average*, or *typical*, or even *reasonable*. But if you went on to read the rest of this book and understand its main message, you might then give a different answer to that question.

It is not a trick question, however. The "correct" answer is **not** "Alice has the true view of the galaxy." Neither is it "Neither of them" nor is it "Both of them."

This preface is not the place to discuss possible alternative answers to the above question; you should be able to work one out based on the principles discussed in the main text of this book. Although the question is easy to state, the answer we give in the last chapter is simple neither to explain nor to justify. It is best discussed using a lot of words and rather sophisticated mathematical models and technologies. These are introduced, developed, and applied after intensive preliminary discussions of the issues concerned.

Our answer is intimately bound up with the *laws of observation* as they pertain to quantum processes, the subject matter of this book. These laws are the rules that underpin modern, empirically based perceptions of physical reality (our term for the world of experience).¹ It has taken over two thousand years of philosophical, natural philosophical, and empirical inquiry into the physical universe for some of these rules to be discovered, particularly the ones involving quantum processes. These latter have been understood for only the last hundred years or so, and what they mean is still an active subject of debate. The old question of how many angels can dance on the head of a pin is nothing compared with the question of what the wave function means in quantum mechanics.

The problem is that most rules of quantum mechanics are counter intuitive and may even appear wrong and unphysical to the person in the street. But then, quantum mechanics has appeared baffling ever since it was stumbled on by Planck in 1900. But as with Alice and Bob above, appearances can be deceptive:

 $^{^1}$ I don't imply there are other forms of reality. I can say nothing about that.

Cambridge University Press & Assessment 978-1-009-40145-6 — Quantized Detector Networks George Jaroszkiewicz Frontmatter <u>More Information</u>

xvi

Preface

it is quantum mechanics that continues to give verified predictions, while our classical intuition, experience, and expectations all continue to be confounded.

It is my intention that this book be of value to a wide spectrum of readers: refined quantum theorists, philosophers of science, experimentalists, students, and the well-educated person in the street. If nothing else, I want to provoke readers in two ways: first, to question their own ingrained belief structures about the world they live in and second, to be alerted to the fact that there are a lot of speculative concepts and theories that are discussed by some scientists as if they were scientifically meaningful, when in reality they have no empirical basis whatsoever. I call these theories *vacuous* and they are dangerous, because they equate theory with empirical evidence. They lure the unsuspecting into unfounded quasi-religious modes of thinking that may be good science fiction but have no place in science proper. A sound interpretation of quantum mechanics really does matter, because that involves our perceptions of reality. After all is said and done, that is really what distinguishes us from other creatures and affects everything that we do.

This book is timely in two ways. First, after a century of attempts to understand quantum theory from a classical, noncontextual perspective, intense activity into the neurological basis of human psychology has started to reveal a starting truth: classical reality exists only in the mind. Every day, the results of new laboratory experiments demonstrate more and more convincingly just how misleading the classical perception of the world really is. We humans are now being shown up for what we are: we live in illusory worlds of our imaginations, constructed by our brains as they attempt to match the vast flood of sensory data streaming in through our senses with patterns of preconditioned rationalization.

Second, there is intense interest and work worldwide in the development of quantum computers. In this book I discuss the application of computer algebra to quantum registers containing many quantum bits (qubits). Although my focus in this book is on the description of quantum experiments, there will be a great overlap between quantum computation and that focus, so that I expect this book to be of some interest, and I hope value, to quantum computation theorists.

A preface is the place for an author to give their thanks and acknowledgment. Here are mine. First, I have been overawed by the fact that the underlying theme of this book, which is the debate about the nature of perception, has been going on for many centuries. Some of the views that I have read greatly impressed me and I realized that there were individuals who saw through the fog of conditioning that surrounds all of us. In particular, I greatly admire the works of David Hume, whose views about the nature of perception I found remarkably in tune with this book. As an undergraduate, I was greatly influenced by the lectures of Nicholas Kemmer. Later, I encountered the brilliant works of Julian Schwinger, and even had the great pleasure of meeting him and talking with him in 1993 in Nottingham and London, during the bicentenary celebrations of the

Preface

birth of George Green. These extraordinarily generous individuals in particular and many others influenced me in one way or another in the most significant of ways.

Finally, I express my gratitude to all members of my extended family, past and present. My parents gave me the opportunities to start writing and the arrival of my granddaughter Julia gave me the motivation to continue when that writing became tedious. Without them this book would not exist. In particular, my wife, Małgorzata, has been immensely supportive and helpful in all my efforts; I thank her for that and for her great patience.

xvii

Acronyms

CA	computer algebra
CBR	computational basis representation
CM	classical mechanics
CPT	charge, parity, and time
CST	causal set theory
CTC	closed timelike curve
DS	double-slit
EPR	Einstein, Podolsky, and Rosen
eQDN	extended quantized detector networks
FLS	Feynman, Leighton, and Sands
GP	generalized proposition
GPC	general proposition classification
GR	general relativity
HV	hidden variables
LG	Leggett–Garg
LSZ	Lehmann–Symanzik–Zimmermann
MDS	monitored double-slit
MS	Misra and Sudarshan
NEO	null evolution operator
ONB	orthonormal basis
POVM	positive operator-valued measure
PVM	projection-valued measure
QDN	quantized detector network
QED	quantum electrodynamics
$\rm QFT$	quantum field theory
QM	quantum mechanics
REC	relative external context
RIC	relative internal context
RQFT	relativistic quantum field theory
SBR	signal basis representation
SG	Stern–Gerlach
SR	special relativity
SUO	system under observation
ToE	Theory of Everything