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1 
Introduction 

This book stems from lectures in different places and at different times. 

I would like to thank all those colleagues, graduate students and collab­

orators, who have patiently listened, commented upon and by insistent 

questioning given me insight into the physics described in this text. 

You will find that the physics is described in a semi-classical language. I 

believe that my generation, the grandchildren of the wonderful generation 

that developed the tools of quantum mechanics, have largely learned to use 

semi-classical dynamical pictures while avoiding the quantum mechanical 

pitfalls. After having understood that the state density is different and 

that probabilities are not additive in quantum mechanics most of one's 

classical intuition can be used. I provide an example in Chapter 2 which 

shows that you can never fool Heisenberg's indeterminacy relations (i.e. 

position and conjugate momentum cannot be determined simultaneously 

with arbitrary precision). But you may choose your variables in such a 

way (rapidity and position for high-energy particles) that all the quantum 

mechanical rules are fulfilled and you may still transfer easily between the 

descriptions in terms of the different variable sets. 

The material in the book has been chosen to stress the connections 

between different approaches to high-energy physics. The basic picture 

is nevertheless the one stemming from field theory as it is used in the 

Lund model. The Lund model has been successful in describing many 

of the dynamical features of multiparticle production because it contains 

so many relations to earlier and contemporary work, although often 

with very different dynamical starting points. I am very sorry that due 

to space limitations I have had to exclude many interesting and still­

viable theoretical approaches to the physics of high-energy multi particle 

production from this book. 

It may at this point be useful to try to clarify what I mean by the 

Lund model in this book. There is some confusion because during the 
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2 Introduction 

years many of the original contributors (and also people never working 
with the Lund Group) have provided a lot of material described as 'in 
accordance with the Lund model'. After chapters on relativistic kinematics, 

field theory, renormalisation and the parton model, all introduced to provide 
the notation as well as some useful formulas, I will consider the Lund 

fragmentation model of quarks and gluons. 

This part of the Lund model (which was the first part produced and 
which, owing to lucky coincidences has not been changed very much over 
the years) makes use of the massless relativistic string as a model for 
the QCD color force fields. It provides a description of the transition 

from the partonic entities to the final-state observables in terms of the 
hadronic states. The model is described in detail in Chapters 6-15 and is 
implemented in the well-known Monte Carlo simulation program JETSET. 

The major achievements are 

1 A consistent space-time and energy-momentum-space description 
leading to a unique (Markov) stochastic process for the breakup of 

the (string) field into hadrons. The process is described on the (1 + 1)­
dimensional surface spanned by the string field during its periodic 
motion (and it is determined uniquely from the partons). 

2 A highly nontrivial description of the partons, with the quarks (q­

particles) and antiquarks (q-particles) as endpoint excitations and 
the gluons (g) as internal excitations on the string field. 

3 The breakup of the fields into 'new' qq-pairs stems from a quantum 
mechanical tunnelling process. Although all the formulas of the 
model are derived in a semi-classical framework the final results 
can be interpreted within a consistent quantum mechanical scenario 

(and actually also within statistical mechanics, thereby providing the 
so-called Feynman-Wilson gas analogy). 

4 It is possible within the model to account for the strong (transverse) 
polarisation effects observed and to describe more subtle quantum 
mechanical interference effects such as Bose-Einstein correlations. 

There is secondly the Lund dipole cascade model (the DCM), which 
contains a description of the multiparton bremsstrahlung emissions in 
perturbative QCD, thereby providing the states for which the Lund frag­

mentation model may be applied. This is described in Chapters 16-18 and 
it is implemented in the ARIADNE Monte Carlo simulation program. A 
different approach, the method of independent parton cascades, has been 
implemented in the JETSET and, according to the Webber-Marchesini 

model, cf. Chapter 17, in the HERWIG Monte Carlo simulation pro­
grams. 
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Introduction 3 

There is finally (and this is a very recent advance) the linked dipole 

chain model, providing a description of the states occurring in deep in­

elastic scattering (DIS) events. I start with Chapter 19 on the 'ordinary' 

approach to DIS using the (double) leading-logarithm approximation as 

well as the results of approximating the matrix elements by the (major) 

lightcone singularities. The main problem is to describe the hadron struc­

ture functions, i.e. the partonic flux factors, stemming from the hadronic 

wave function, in accordance with perturbative QCD. The well-known 

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations are de­

rived and also the considerations behind the Balitsky-Fadin-Kuraev-Lipa­

tov (BFKL) mechanism. Finally I have included a section on the recent­

ly developed Ciafaloni-Catani-Marchesini-Fiorani (CCMF) model, which 

contains a very ambitious effort to re-sum the large-order contributions 

to the perturbative QCD diagrams. 

The linked dipole chain (LDC) model, described in Chapter 20, is 

a generalisation and simplification of the results of the CCFM model 

and just as for CCFM it interpolates between the DGLAP and BFKL 

results for the structure functions. It provides a general framework to 

describe all kinds of deep inelastic scattering events (besides the 'ordinary' 

parton-probe events that occur in accordance with perturbative QCD and 

the Feynman parton model there are boson-gluon fusion events, which 

contribute a large part of the present HERA cross section, and Rutherford 

scattering between the resolved probe structure and the hadron structure). 

In this way the Lund model contains one common general feature at every 

level of the description of QeD, i.e. the occurrence of dipoles: 

• An excitation in the vacuum, e.g. from an e+ e- annihilation event, 
produces a color qq-dipole, which decays via gluon bremsstrahlung 

according to the dipole cascade model into a set of color dipoles, 

spanned between the partons. This is known as a 'timelike' cascade 

because the original large excitation mass decays into smaller and 

smaller dipole masses. The dipoles move apart thereby producing a 

force field similar to the modes of the massless relativistic string. 

• Afterwards the string field breaks up into hadrons, 'the ultimate 

dipoles', produced in the Lund fragmentation model from a quark 

and antiquark from adjacent breakup vertices together with the field 

in between. 

• When such a hadron is probed the states can again be described 
as a set of dipoles, according to the linked dipole chain model, 

spanned between the color-adjacent gluons emitted in the ensuing 

bremsstrahlung. This is known as a 'spacelike' cascade because it 

corresponds to probing the hadron wave function up towards larger 
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4 Introduction 

and larger 'virtualities', i.e. more and more spacelike momentum 

transfers, _q2 = Q2 (smaller wavelengths A'" l/Q). The interaction 

with the probe brings the whole chain on-shell and then the dipoles 

again decay via the dipole cascade model to smaller dipoles and 

finally into hadrons via the Lund fragmentation model. 

At this point I would like to make two remarks. Firstly there is a 

duality between descriptions of perturbative QCD in terms of dipoles 

and in terms of gluonic excitations. The gluons correspond to pointlike 

excitations in the color field while the dipoles are the (field) 'links' between 

these points. In other words the color from one dipole meets the anticolor 

from the adjacent one at a gluon 'corner' (note that the color-8 gluons 

can be considered as a combination of 33 color charges). 

My second remark is that the only solvable confined field theory we 

know of, (1 + i)-dimensional QED (the Schwinger model described in 

Chapter 6) is just a theory of dipoles. The Lagrangian of the original 

fermion-antifermion field interacting with the connecting electric field 

can be transformed into the Lagrangian of a free field, corresponding 

to a dipole density of massive quanta composed of such a pair and the 

adjoining field. It should be stressed, however, that it is not known whether 

confinement implies a dipole picture of the charges and the fields. 

Hadronic interactions per se have been investigated during a longer 

timespan than any other parts of multiparticle dynamics, but we are still 

very far from a consistent and useful description. I have at different places 

introduced some features, e.g. the S -matrix and unitarity, which are so 

general that they must be part of any future theory. But I have owing to 

space limitations decided to exclude all specific models, although some of 

them, like Gribov's Reggeon theory, have beauty and generality sufficient 

to redeem even a partial study. 

I have also generally avoided to include experimental material. It should 

be stressed that no phenomenological work is alive without the necessary 

experimental checks on the approach. There have been, however, a large 

number of investigations, reviews and comparisons with experimental 

data in all the conference proceedings of the last decade. They are all 

in agreement with the general approach of the book. I will as a further 

excuse make use of the following sentence, which occurs in many places 

and must have been invented for just this situation: 'New experimental 

material is also coming in at such a rapid rate that the book would date 

unnecessarily quickly by including only the presently available data'. I 

admire my experimental colleagues for the fact that it is a true statement! 

But we should always keep in mind what Bacon has pointed out (this is 

a free translation of the credo of phenomenology): 'You have not learned 

anything by being in agreement with data, because there are always other 

www.cambridge.org/9781009401258
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-40125-8 — The Lund Model
Bo Andersson
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 5 

possible explanations. But if you put forward an idea, calculate inside the 

framework in an honest way and find disagreements with experiments 

then you have learned something, i.e. that this approach is not taken by 

Nature'. Or as one of my friends enthusiastically said during a heated 

conference discussion: We must dare to be wrong! 

I have used the units conventional in today's high-energy physics put­

ting the velocity of light c and Planck's constant 1i equal to unity thereby 

making energy dimensions inverse to length dimensions. In that connection 

it is useful to remember that a transfer between energy and length units 

is with this convention provided by the rather precise approximation 1 fm 

x 1GeV 5. 

In order to keep the reference list reasonably short I have taken the 

liberty of omitting references to phenomena like the parton model, Wick's 

theorem, the Ward identity etc., which nowadays are all part of our 

common physics heritage. I may have overdone it and if so I apologise to 

the authors. I would like to mention that material included in the books 

J.D. Jackson, Classical Electrodynamics, John Wiley & Sons 

H. Goldstein, Classical Mechanics, Addison-Wesley 

E. Merzbacher, Quantum Mechanics, John Wiley & Sons 

is referred to by these authors' name only. There is evidently a set of 

equally useful basic text-books where you can find the same material, 

but it is impossible to be exhaustive. When it comes to quantum field 

theory the subject has still not matured to the extent of these text-books. 

A rather formal description (containing, however, many useful references) 

is given by C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw­

Hill, 1980. For perturbative QCD there is a recent book, Yu.L. Dokshitzer, 

v.A. Khoze, A.H. Mueller and S.l. Troyan, Basics of Perturbative QCD, 

Editions Frontieres, 1991, which is very good. An early reference to the 

Lund model (as of 1982) is Phys. Rep. 97 31, 1983. 
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2 
Rela tivistic kinematics, electromagnetic 
fields and the method of virtual quanta 

The dynamics of the massless relativistic string (which we will meet at very 

many different places in this book) is a delightful theoretical laboratory to 

study the properties of the theory of special relativity. To make the book 

self-contained and also to define our notation we will briefly review in this 

chapter some properties of special relativity, in particular with respect to 

its implications for high-energy particle kinematics. 

We will also review some properties of electromagnetic fields with 

particular emphasis on the features we are going to make use of later in 

the book. We will end with a description of the interaction ability of an 

electrically charged particle. 

This is the first but not the last example in this book of the law of the 

conservation of useful dynamics. This says that every new generation of 

theoretical physicists tends to reinvent, reuse (and usually also rename) 

the most useful results of earlier generations. One reason is evidently that 

there are few situations where it is possible to find a closed mathematical 

expression for the solution to a dynamical problem. 

Here our basic aim is to describe the interactions between charged 

particles which are moving with very large velocities (as they do in high­

energy physics). As a charged particle interacts via its field the question 

can be reformulated into finding a way to describe the field of a charged 

particle which is moving very fast. To account for quantum mechanics we 

need a way to describe the quantum properties of the charged particle's 

field and this problem can be solved even at a semi-classical level. It is 

possible to obtain a closed formula for the flux of the field quanta in this 

case. 

Fermi addressed the problem in the 1920s, Weizsacker and Williams 

found the method independently of Fermi and each other in the 1930s. 

After that it became a standard tool in connection with QED in terms of 

the method of virtual quanta, the MVQ. Later again Feynman made use 
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2.1 The Lorentz boost 7 

of it in order to introduce the parton model. We will discuss that model 

repeatedly in this book, but it is useful to see how 'partons' emerge even 

at the semi-classical level in electromagnetism. 

2.1 The Lorentz boost 

Michelson and Morley demonstrated that the velocity of light, c, is inde­

pendent of the direction of a light beam. Einstein interpreted this finding 

to imply that the velocity c is independent of the relative motion of the 

light source and the detector. 

We are not going to dwell upon the many basic questions that are raised 

by this interpretation but simply accept that it has profound implications 

with respect to measurements of events in space and time. The resulting 

predictions have been tested repeatedly and always been found to be true. 

In this section we will briefly consider some of these predictions. 

I The Lorentz boost. Consider two observers A and B, moving with 

respect to each other. We will suppose that they have calibrated their 

watches and decided upon a common origin in space and time as well 

as the directions of the coordinate axes in space. The arrangement 

will be that they move along their common x-axis so that B has the 

velocity v with respect to A. We will for simplicity use units such that 

the velocity of light c = 1. Then an event (1) which for A occurs at 

the space-time coordinates 

(1) == (tlA,X1A,Y1A,ZlA) 

will for B, in his system, seem to occur at 

coordinates (with the corresponding index B): 

tlB = Y(V)(tlA - VX1A) 

X1B = Y(V)(X1A - vtlA) 

Y1B = Y1A 

ZlB = ZlA 

(2.1) 

the time and space 

(2.2) 

This transformation is termed a boost along the x-axis and y(v) = 
1/.J1 - v2. The time- and the (longitudinal) x-coordinates get mixed 

by the transformation but the transverse coordinates, i.e. the Y- and 

z-coordinates, are unaffected. Several boosts may be performed one 

after the other. It is easy to see that the final result does not depend 

upon the order and therefore the boosts along a single direction 

constitute a commutative (abelian) group. 

More complex transformations also include rotations of the coordinate 

systems. Note that such rotations in general do not commute with each 
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8 Relativistic kinematics 

other or with the boost transformations. This means that the outcome of 

the total transformation depends upon the order in which each one of the 

rotations and boosts is done. 

II The proper time. The coordinate and time values are all differences 

between the commonly agreed origin and the space-time point at 

which event (1) occurs. They are all relative coordinates. A and B will 

have different values for their measured t, x values for the event but 

there is one combination which they will agree upon, 

(2.3) 

The proper time of the event, 'q, is evidently an invariant with respect 

to all boosts along the x-axis. This means that it does not contain any 

reference to the relative velocity of the observers along the x-axis. 

The proper time is the value a watch would show if it started out from 

the origin (i.e. at t = 0, x = 0) in A's system and moved away with velocity 

VA = XIA/tIA. Then it will arrive at XIA at time tlA, just when the event 

(1) occurs. To see this imagine that observer B had chosen the velocity 

v = VA. It is therefore the time obtained in the rest frame of the watch. 

This is the frame in which both events occur at the same place, the space 

origin (make use of the second line in Eq. (2.2) !). 

IlIA Time dilation. The observer A will conclude that the time difference 

in his system that corresponds to the proper time 'rl would be (make 

use of the first line of Eq. (2.2)!) 

'rl 
tlA = (2.4) 

This means that to A it will seem that the time difference is larger, 

i.e. it will seem as if time is passing more slowly in the watch rest 

system. This effect is called time dilation. 

This is a noticeable effect for the fast-moving fragments of a collision 

between cosmic ray elements and the atoms of the upper atmosphere. 

There are e.g. the ,u-particles, very short-lived when we produce them 

basically at rest, in the laboratory on earth. The lifetime of a ,u-particle is 

around 2 x 10- 6 seconds. Therefore even if it was moving with the velocity 

of light it would only be able to cover about 600 metres! 

Nevertheless the produced ,u-particles survive a sufficiently long time to 

be able to go all the way from the top of the atmosphere down to earth, 

where we can find them in abundance. 

To understand this effect we note that the decay time is related to the 

properties of the particle in its rest frame while the 'survival time' we 
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2.1 The Lorentz boost 9 

observe is the time it will take a fast-moving particle (with velocity close 

to c) to move the distance (j from the top of the atmosphere (at a height 

of around 2 x 104 meters) to the observation point on earth. According 

to Eq. (2.4) this survival time is much longer and therefore many of the 

Il-particles survive to reach the ground. 

IIIB Lorentz contraction. There is a corresponding effect for distances, 

which is called Lorentz contraction. For the surviving Il-particles, 

the distance (j, which to us is about 2 x 104 meters, will seem to be 

at most the 600 metres mentioned above. Considered from the rest 

system of the Il-particle the distance (jrest is the length that the earth 

and its atmosphere moves towards it during its lifetime! From the 

Eq. (2.4) we conclude for the Lorentz contraction effect 

(jrest = (j -J 1 - v2 (2.5) 

IV Covariance. The scalar product of two ordinary vectors a . b, written 

in terms of the coordinates as axbx + ayby + azbz, is an invariant 

with respect to rotations. It is possible to write the invariant 1:1 as a 

(generalised) scalar product. The quantity 

(2.6) 

will be invariant with respect to the general Lorentz transformations 

(i.e. boosts and rotations in any order) if the coordinates and times 

of the events (1) and (2) transform with respect to Lorentz boosts 

as in Eq. (2.2) (and (1) == (Xl,Yl,Zt) and similarly (2) transform as 

ordinary vectors under rotation). 

Such quantities as (1) in Eq. (2.1) are called four-vectors. They transform 

as vectors with respect to the Lorentz transformations, in particular as in 

Eq. (2.2) for boosts along an axis. Besides the invariants, in the same way 

called scalars under the Lorentz transformations, and the four-vectors it 

is possible to define four-tensors (the electromagnetic field tensor is an 

example of such a quantity). 

All these quantities are said to be covariant: they transform in a linear 

way with respect to the Lorentz transformations, i.e. the corresponding 

quantities in different Lorentz frames are related by means of linear 

equations. 

V The transformation of the velocity. As an example of a quantity with 

more complex properties with respect to the Lorentz transformations 

we consider the velocity. We have already mentioned the velocity VA 

measured in A's system. From B's point of view the corresponding 
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10 Relativistic kinematics 

velocity will be (use both the first and the second line of Eq. (2.2)!) 

VA -v 
vB = (2.7) 

I-VAV 

It is not difficult to show that if the velocities VA, v do not exceed 

c = 1 then the velocity VB will have the same property. 

VI The energy-momentum Jour-vector. The classical (Newtonian) defini­

tion of momentum is the mass (m) times the velocity (vp) of the 

particle. But from Eq. (2.7) it is obvious that the transformation 

properties of the velocity are complex under a Lorentz boost. In 

order to generalise the definition of momentum Einstein made use 

of the proper time of the particle motion in the following way. 

The velocity of the particle is defined in terms of its trajectory r(t) (i.e. 

its space position r labelled by means of the time t) as 

dr 
vp = dt (2.8) 

For every (massive) particle it is possible to imagine a rest frame in which 

the particle is always at the (space) origin. In this way it is possible to 

define the proper time. for the particle's motion; it is the time in this, the 

particle's rest system. 

Considered from any other Lorentz frame the proper time • will be 

related to the 'ordinary' time t by means of the differential equation 

d. = 

according to Eqs. (2.3), (2.4). 

(2.9) 

The proper time .(t) defined in this way is unique as soon as proper 

boundary conditions are given for the differential equation. (Its functional 

dependence upon the time t will in general be different in different Lorentz 

frames, however.) 

We conclude that the corresponding Jour-velocity u defined by 

( dt dr) 
u == d.' d. = y(vp)(I, vp) (2.10) 

will transform covariantly as a vector under the Lorentz transformations. 
(The third line of Eq. (2.10) is obtained from the differential equation 

(2.9).) Note that the corresponding invariant uu = u2 has the value u2 = l. 

Einstein defined the Jour-momentum p of a particle as 

p = (e,p) = mu = my(vp)(l, vp) (2.11) 

The space components p (from now on the momentum) of this four­

momentum (which we sometimes will call the energy-momentum vector) 
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