Introduction to Electrodynamics

Fifth Edition

David J. Griffiths is Emeritus Professor of Physics at Reed College, Oregon, where he has taught for over 30 years. He received his BA and Ph.D. from Harvard University, where he studied elementary particle theory. He has published three widely-used textbooks on the topics of quantum mechanics, electrodynamics, and particle physics, and a lower-level text titled *Revolutions in Twentieth-Century Physics* (Cambridge, 2012).

Introduction to Electrodynamics

Fifth Edition

DAVID J. GRIFFITHS

Reed College, Oregon

Cambridge University Press & Assessment 978-1-009-39775-9 — Introduction to Electrodynamics David J. Griffiths Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781009397759

DOI: 10.1017/9781009397735

Fourth edition © Cambridge University Press & Assessment 2017 Fifth edition © David J. Griffiths 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

This book was previously published by Pearson Education, Inc. 1989, 1999, 2013 Fourth edition reissued by Cambridge University Press 2017 3rd printing 2021 (version 4, October 2022) Fifth edition 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-39775-9 Hardback

Additional resources for this publication at www.cambridge.org/electrodynamics5e.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pr	eface			page	
Aa	lvertis	sement		Х	
1	Vect	or Analy	rcis		
•	1.1	Vecto	r Algebra		
		1.1.1	Vector Operations		
		1.1.2	Vector Algebra: Component Form		
		1.1.3	Triple Products		
		1.1.4	Position, Displacement, and Separation Vectors		
		1.1.5	How Vectors Transform		
	1.2	Differ	rential Calculus		
		1.2.1	"Ordinary" Derivatives		
		1.2.2	Gradient		
		1.2.3	The Del Operator		
		1.2.4	The Divergence		
		1.2.5	The Curl		
		1.2.6	Product Rules		
		1.2.7	Second Derivatives		
	1.3	Integr	ral Calculus		
		1.3.1	Line, Surface, and Volume Integrals		
		1.3.2	The Fundamental Theorem of Calculus		
		1.3.3	The Fundamental Theorem for Gradients		
		1.3.4	The Fundamental Theorem for Divergences		
		1.3.5	The Fundamental Theorem for Curls		
		1.3.6	Integration by Parts		
	1.4	Curvi	linear Coordinates		
		1.4.1	Spherical Coordinates		
		1.4.2	Cylindrical Coordinates		
	1.5	The I	Dirac Delta Function		
		1.5.1	The Divergence of $\hat{\mathbf{r}}/r^2$		
		1.5.2	The One-Dimensional Dirac Delta Function		
		1.5.3	The Three-Dimensional Delta Function		
	1.6	The T	Theory of Vector Fields		
		1.6.1	The Helmholtz Theorem		
		1.6.2	Potentials		
	More Problems on Chapter 1				

vi	_	Contents		
	2	Elect	trostatics	57
		2.1	The Electric Field	57
			2.1.1 Introduction	57
			2.1.2 Coulomb's Law	58
			2.1.3 The Electric Field	59
			2.1.4 Continuous Charge Distributions	61
		2.2	Divergence and Curl of Electrostatic Fields	64
			2.2.1 Field Lines, Flux, and Gauss's Law	64
			2.2.2 The Divergence of E	68
			2.2.3 Applications of Gauss's Law	69
			2.2.4 The Curl of E	74
		2.3	Electric Potential	76
			2.3.1 Introduction to Potential	76
			2.3.2 Comments on Potential	78
			2.3.3 Poisson's Equation and Laplace's Equation	81
			2.3.4 The Potential of a Localized Charge Distribution	82
		2.4	2.3.5 Boundary Conditions	85
		2.4	Work and Energy in Electrostatics	88
			2.4.1 The work it takes to Move a Charge	80 80
			2.4.2 The Energy of a Continuous Charge Distribution	89 01
			2.4.5 The Energy of a Continuous Charge Distribution	91
		25	Conductors	95
		2.3	2.5.1 Basic Properties	95
			2.5.1 Dasie Hopernes	97
			2.5.3 Surface Charge and the Force on a Conductor	100
			2.5.4 Capacitors	102
		Moi	re Problems on Chapter 2	105
	3	Pote	ntials	113
		3.1	Laplace's Equation	113
			3.1.1 Introduction	113
			3.1.2 Laplace's Equation in One Dimension	114
			3.1.3 Laplace's Equation in Two Dimensions	115
			3.1.4 Laplace's Equation in Three Dimensions	116
			3.1.5 Boundary Conditions and Uniqueness Theorems	118
			3.1.6 Conductors and the Second Uniqueness Theorem	121
		3.2	The Method of Images	124
			3.2.1 The Classic Image Problem	124
			3.2.2 Induced Surface Charge	125
			3.2.3 Force and Energy	126
		2.2	3.2.4 Other Image Problems	127
		3.3	Separation of Variables	129
			3.3.1 Cartesian Coordinates	130
		2 4	5.5.2 Spherical Coordinates	139
		5.4	multipole Expansion	14/

vii				Contents	
	I		341	Approximate Potentials at Large Distances	147
			342	The Monopole and Dipole Terms	151
			3.4.3	Origin of Coordinates in Multipole Expansions	151
			3.4.4	The Electric Field of a Dipole	154
		Mo	re Prob	lems on Chapter 3	157
	4	Elect	tric Field	ls in Matter	166
		4.1	Polari	zation	166
			4.1.1	Dielectrics	166
			4.1.2	Induced Dipoles	166
			4.1.3	Alignment of Polar Molecules	169
			4.1.4	Polarization	171
		4.2	The F	ield of a Polarized Object	172
			4.2.1	Bound Charges	172
			4.2.2	Physical Interpretation of Bound Charges	175
			4.2.3	Microscopic and Macroscopic Fields	178
		4.3	The E	lectric Displacement	181
			4.3.1	Gauss's Law in the Presence of Dielectrics	181
			4.3.2	A Deceptive Parallel	183
			4.3.3	Boundary Conditions	184
			4.3.4	The Crystal Ambiguity	185
		4.4	Linea	r Dielectrics	186
			4.4.1	Susceptibility, Permittivity, Dielectric Constant	186
			4.4.2	Boundary Value Problems with Linear Dielectrics	193
			4.4.3	Energy in Dielectric Systems	197
		м	4.4.4	Forces on Dielectrics	201
		Moi	re Prob	lems on Chapter 4	204
	5	Mag	netosta	tics	209
		5.1	The L	orentz Force Law	209
			5.1.1	Magnetic Fields	209
			5.1.2	Magnetic Forces	211
			5.1.3	Currents	215
		5.2	The B	liot–Savart Law	221
			5.2.1	Steady Currents	221
			5.2.2	The Magnetic Field of a Steady Current	222
		5.3	The D	Divergence and Curl of B	227
			5.3.1	Straight-Line Currents	227
			5.3.2	The Divergence and Curl of B	229
			5.3.3	Ampère's Law	231
		- .	5.3.4	Comparison of Magnetostatics and Electrostatics	238
		5.4	Magn	etic Vector Potential	243
			5.4.1	The Vector Potential	243
			5.4.2	Boundary Conditions	249
			5.4.3	Multipole Expansion of the Vector Potential	251
		Mo	re Prob	lems on Chapter 5	255

viii	Contents			
6	Magnetic Fields in Matter	268		
	6.1 Magnetization	268		
	6.1.1 Diamagnets, Paramagnets, Ferromagnets	268		
	6.1.2 Torques and Forces on Magnetic Dipoles	269		
	6.1.3 Effect of a Magnetic Field on Atomic Orbits	273		
	6.1.4 Magnetization	275		
	6.2 The Field of a Magnetized Object	276		
	6.2.1 Bound Currents	276		
	6.2.2 Physical Interpretation of Bound Currents	279		
	6.2.3 The Magnetic Field inside Matter	281		
	6.3 The Auxiliary Field H	281		
	6.3.1 Ampère's Law in Magnetized Materials	281		
	6.3.2 A Deceptive Parallel	285		
	6.3.3 Boundary Conditions	286		
	6.4 Linear and Nonlinear Media	286		
	6.4.1 Magnetic Susceptibility and Permeability	286		
	6.4.2 Ferromagnetism	289		
	More Problems on Chapter 6	294		
7	Electrodynamics	298		
	7.1 Electromotive Force	298		
	7.1.1 Ohm's Law	298		
	7.1.2 Electromotive Force	304		
	7.1.3 Motional Emf	306		
	7.2 Electromagnetic Induction	316		
	7.2.1 Faraday's Law	316		
	7.2.2 The Induced Electric Field	320		
	7.2.3 Inductance	325		
	7.2.4 Energy in Magnetic Fields	331		
	7.3 Maxwell's Equations	335		
	7.3.1 Electrodynamics before Maxwell	335		
	7.3.2 How Maxwell Fixed Ampère's Law	336		
	7.3.3 Maxwell's Equations	340		
	7.3.4 Magnetic Charge	341		
	7.3.5 Maxwell's Equations in Matter	342		
	7.3.6 Boundary Conditions	345		
	1.4I he Field of a Rotating MagnetMore Problems on Chapter 7	347 350		
Int	ermission	361		
8	Conservation Laws	362		
2	8.1 Charge and Energy	362		
	8.1.1 The Continuity Equation	362		
	8.1.2 Poynting's Theorem	363		
		200		

ix –	Contents				
		8.2.1 Newton's Third Law in Electrodynamics	367		
		8.2.2 Maxwell's Stress Tensor	368		
		8.2.3 Conservation of Momentum	372		
		8.2.4 Angular Momentum	376		
	8.3	Magnetic Forces Do No Work	379		
	Moi	re Problems on Chapter 8	384		
9	Elect	tromagnetic Waves	390		
	9.1	Waves in One Dimension	390		
		9.1.1 The Wave Equation	390		
		9.1.2 Sinusoidal Waves	393		
		9.1.3 Boundary Conditions: Reflection and Transmission	396		
		9.1.4 Polarization	399		
	9.2	Electromagnetic Waves in Vacuum	401		
		9.2.1 The Wave Equation for E and B	401		
		9.2.2 Monochromatic Plane Waves	402		
		9.2.3 Energy and Momentum in Electromagnetic Waves	406		
	9.3	Electromagnetic Waves in Matter	408		
		9.3.1 Propagation in Linear Media	408		
		9.3.2 Reflection and Transmission at Normal Incidence	410		
		9.3.3 Reflection and Transmission at Oblique Incidence	412		
	9.4	Absorption and Dispersion	418		
		9.4.1 Electromagnetic Waves in Conductors	418		
		9.4.2 Reflection at a Conducting Surface	422		
		9.4.3 The Frequency Dependence of Permittivity	423		
	9.5	Guided Waves	430		
		9.5.1 Wave Guides	430		
		9.5.2 TE Waves in a Rectangular Wave Guide	433		
		9.5.3 The Coaxial Transmission Line	436		
	Moi	re Problems on Chapter 9	437		
10	0 Pote	Potentials and Fields			
	10.1	The Potential Formulation	442		
		10.1.1 Scalar and Vector Potentials	442		
		10.1.2 Gauge Transformations	445		
		10.1.3 Coulomb Gauge and Lorenz Gauge	446		
		10.1.4 Lorentz Force Law in Potential Form	448		
	10.2	Continuous Distributions	450		
		10.2.1 Retarded Potentials	450		
		10.2.2 Jefimenko's Equations	454		
	10.3	Point Charges	456		
	1 3 . 2	10.3.1 Liénard–Wiechert Potentials	456		
		10.3.2 The Fields of a Moving Point Charge	462		
	Moi	re Problems on Chapter 10	468		

	Contents				
11	Radiation	472			
	11.1 Dipole Radiation	472			
	11.1.1 What Is Radiation?	472			
	11.1.2 Electric Dipole Radiation	473			
	11.1.3 Magnetic Dipole Radiation	479			
	11.1.4 Radiation from an Arbitrary Source	482			
	11.2 Power Radiated by a Point Charge	487			
	11.2.1 The Larmor Formula	487			
	11.2.2 The Liénard Formula	489			
	11.3 The Radiation Reaction	493			
	11.3.1 The Abraham–Lorentz Formula	493			
	11.3.2 The Self-Force on a Charged Particle	498			
	More Problems on Chapter 11	502			
12	Electrodynamics and Relativity	508			
	12.1 The Special Theory of Relativity	508			
	12.1.1 Einstein's Postulates	508			
	12.1.2 The Geometry of Relativity	514			
	12.1.3 The Lorentz Transformations	524			
	12.1.4 The Structure of Space-Time	530			
	12.2 Relativistic Mechanics	538			
	12.2.1 Proper Time and Proper Velocity	538			
	12.2.2 Relativistic Energy and Momentum	540			
	12.2.3 Relativistic Kinematics	542			
	12.2.4 Relativistic Dynamics	547			
	12.3 Relativistic Electrodynamics	554			
	12.3.1 Magnetism as a Relativistic Phenomenon	554			
	12.3.2 How the Fields Transform	557			
	12.3.3 The Field Tensor	566			
	12.3.4 Electrodynamics in Tensor Notation	569			
	12.3.5 Relativistic Potentials	572			
	More Problems on Chapter 12	574			
Ap	pendix A Vector Calculus in Curvilinear Coordinates	578			
	A.1 Introduction	578			
	A.2 Notation	578			
	A.3 Gradient	579			
	A.4 Divergence	580			
	A.5 Curl	582			
	A.6 Laplacian	584			
Ар	pendix B The Helmholtz Theorem	585			
An	pendix C Units	588			

Preface

This is a textbook on classical electricity and magnetism, designed for an undergraduate course at the junior or senior level. It can be covered comfortably in two semesters, maybe even with room to spare for special topics (AC circuits, numerical methods, plasma physics, transmission lines, antenna theory, etc.). A one-semester course could reasonably stop after Chapter 7. Unlike quantum mechanics or thermal physics (for example), there is a fairly general consensus with respect to the teaching of electrodynamics; the subjects to be included, and even their order of presentation, are not particularly controversial, and textbooks differ mainly in style and tone. My approach is perhaps less formal than most; I think this makes difficult ideas more interesting and accessible.

For this new edition I have made a number of small changes, in the interests of clarity and grace. In a few places I have corrected errors or expanded the discussion. I have added some new problems, including a few (flagged by a mouse in the margin) that will require a computer. It seemed worthwhile to provide at least some minimal guidance to those wanting to plot a given field (in the form of representative arrows), to draw a field line (starting from a particular point), or to graph the trajectory of a charged particle moving through a specified electric and/or magnetic field (starting at a particular point with a given velocity). These problems are keyed to Mathematica (specifically, version 13.1), but instructors should have no trouble converting them to other languages, if they prefer. I have added some new commentary on subtle issues: ambiguities in the definition of polarization in crystals, problematic aspects of electric and (especially) magnetic field lines, the awkward role of intrinsic spin (a strictly quantum phenomenon) in a classical discussion of magnetic materials.

And I have included more references to the accessible literature (particularly the *American Journal of Physics*). I realize, of course, that most readers will not have the time or inclination to consult these resources, but I think it is worthwhile anyway, if only to emphasize that electrodynamics, notwithstanding its venerable age, is very much alive, and intriguing new discoveries are being made all the time. I hope that occasionally a problem will pique your curiosity, and you will be inspired to look up the references – some of them are real gems.

I have maintained three items of unorthodox notation:

• The Cartesian unit vectors are written $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ (and, in general, all unit vectors inherit the letter of the corresponding coordinate).

Cambridge University Press & Assessment 978-1-009-39775-9 — Introduction to Electrodynamics David J. Griffiths Frontmatter More Information

- The distance from the *z*-axis in cylindrical coordinates¹ is designated by *s*, to avoid confusion with *r* (the distance from the *origin*, and the radial coordinate in the spherical system).
- The script letter \mathbf{a} denotes the vector from a source point \mathbf{r}' to the field point \mathbf{r} , as in the figure above. Some authors prefer the more explicit $(\mathbf{r} - \mathbf{r}')$. But this makes many equations distractingly cumbersome, especially when the unit vector $\mathbf{\hat{a}}$ is involved. I realize that unwary readers are tempted to interpret \mathbf{a} as \mathbf{r} – it certainly makes the integrals easier! *Please take note:* $\mathbf{a} \equiv (\mathbf{r} - \mathbf{r}')$, which is *not* the same as \mathbf{r} . I think it's good notation, but it does have to be handled with care.²

As in previous editions, I distinguish two kinds of problems. Some have a specific pedagogical purpose, and should be worked immediately after reading the section to which they pertain; these I have placed at the pertinent point within the chapter. (In a few cases the solution to a problem is used later in the text; these are indicated by a bullet (\bullet) in the left margin.) Longer problems, or those of a more general nature, will be found at the end of each chapter. When I teach the subject, I assign some of these, and work a few of them in class. Unusually challenging problems are flagged by an exclamation point (!) in the margin. Many readers have asked that the answers to problems be provided at the back of the book; unfortunately, just as many are strenuously opposed. I have compromised, supplying answers when this seems particularly appropriate. A complete solution manual is available (to instructors) from the publisher; go to the Cambridge University Press website (www.cambridge.org/electrodynamics5e) to order a copy.

I have benefitted from the comments of many colleagues. I cannot list them all here, but I would like to thank the following people for especially useful contributions to this edition: Catherine Crouch (Swarthmore), Ted Jacobson (Maryland), Don Koks (Adelaide), T. R. Lemberger (Ohio State),

¹ D. Pontius (*Phys. Teach.* 55, 388, 2017) suggests we call it the abaxial coordinate.

² In MS Word, $\dot{\nu}$ is "Kaufmann font," but this can be very difficult to install in T_EX. T_EX users can download a pretty good facsimile from my website: www.reed.edu/physics/faculty/ griffiths/.

xiii

Preface

Kirk McDonald³ (Princeton), Jim McTavish (Liverpool), Mahdiyar Noorbala (Tehran), Darrell Schroeter (Reed), Herschel Snodgrass (Lewis and Clark), Larry Tankersley (Naval Academy), and above all Joel Franklin (Reed). Practically everything I know about electrodynamics – certainly about teaching electrodynamics – I owe to Edward Purcell.

³ Kirk's website, http://kirkmcd.princeton.edu/examples/, is a fantastic resource, with clever explanations, nifty problems, and useful references.

Advertisement

WHAT IS ELECTRODYNAMICS, AND HOW DOES IT FIT INTO THE GENERAL SCHEME OF PHYSICS?

Four Realms of Mechanics

In the diagram below, I have sketched out the four great realms of mechanics:

Classical Mechanics	Quantum Mechanics
(Newton)	(Bohr, Heisenberg, Schrödinger, et al.)
Special Relativity	Quantum Field Theory
(Einstein)	(Dirac, Pauli, Feynman, Schwinger, et al.)

Newtonian mechanics is adequate for most purposes in "everyday life," but for objects moving at high speeds (near the velocity of light) it is incorrect, and must be replaced by special relativity (introduced by Einstein in 1905); for objects that are extremely small (near the size of atoms) it fails for different reasons, and is superseded by quantum mechanics (developed by Bohr, Heisenberg, Schrödinger, and many others, in the 1920s, mostly). For objects that are both very fast and very small (as is common in modern particle physics), a mechanics that combines relativity and quantum principles is in order; this relativistic quantum mechanics is known as quantum field theory - it was worked out in the thirties and forties, but even today it cannot claim to be a completely satisfactory system. In this book, save for the last chapter, we shall work exclusively in the domain of classical mechanics, although electrodynamics extends with unique simplicity to the other three realms. (In fact, the theory is in most respects *automatically* consistent with special relativity, for which it was, historically, the main stimulus.) But please remember, this is a book about *classical* (and in Chapter 12 relativistic) electrodynamics; there is no quantum mechanics here, and you can't expect the theory to explain everything. As we'll see in Chapter 6, the classical theory struggles to provide even a *qualitative* account of magnetic materials. And there is no mention of the photon (well ... that's not quite true: the photon does make a brief appearance in Chapter 12, as an example of a massless particle, but

XV

Advertisement

never in its more significant role as the quantum of the electromagnetic field). Classical electrodynamics describes a *possible* world, but it is not in every detail the world we actually inhabit; there's more to the story.

Four Kinds of Forces

Mechanics tells us how a system will behave when subjected to a given **force**. There are just *four* fundamental forces known (presently) to physics; I list them in the order of decreasing strength:

- (1) Strong
- (2) Electromagnetic
- (3) Weak
- (4) Gravitational

The brevity of this list may surprise you. Where is friction? Where is the "normal" force that keeps you from falling through the floor? Where are the chemical forces that bind molecules together? Where is the force of impact between two colliding billiard balls? The answer is that *all* these forces are *electromagnetic*. Indeed, it is scarcely an exaggeration to say that we live in an electromagnetic world – practically every force we experience in everyday life, with the exception of gravity, is electromagnetic at its core.

The **strong forces**, which hold protons and neutrons together in the atomic nucleus, have extremely short range, so we do not "feel" them, in spite of the fact that they are a hundred times more powerful than electrical forces. The **weak forces**, which account for certain kinds of radioactive decay, are also of short range, and they are far weaker than electromagnetic forces. As for gravity, it is so pitifully feeble (compared to all of the others) that it is only by virtue of huge mass concentrations (like the Earth and the Sun) that we ever notice it at all. The electrical repulsion between two electrons is 10^{42} times as large as their gravitational attraction, and if atoms were held together by gravitational (instead of electrical) forces, a single hydrogen atom would be much larger than the known Universe.

Not only are electromagnetic forces overwhelmingly dominant in everyday life, they are also, at present, the *only* ones that are completely understood. There is, of course, a classical theory of gravity (Newton's law of universal gravitation) and a relativistic one (Einstein's general relativity), but no entirely satisfactory quantum mechanical theory of gravity has been constructed (though many people are working on it). At the present time there is a very successful (if cumbersome) theory for the weak interactions, and a strikingly attractive candidate (called **chromodynamics**) for the strong interactions. All these theories draw their inspiration from electrodynamics; none can claim conclusive experimental verification at this stage. So electrodynamics, a beautifully complete and successful theory, has become a kind of paradigm for physicists: an ideal model that other theories emulate.

xvi

Advertisement

The laws of classical electrodynamics were discovered in bits and pieces by Franklin, Coulomb, Ampère, Faraday, and others, but the person who completed the job, and packaged⁴ it all in the compact and consistent form it has today, was James Clerk Maxwell. The theory is now about 150 years old.

The Unification of Physical Theories

In the beginning, **electricity** and **magnetism** were entirely separate subjects. The one dealt with glass rods and cat's fur, pith balls, batteries, currents, electrolysis, and lightning; the other with bar magnets, iron filings, compass needles, and the North Pole. But in 1820, Oersted noticed that an *electric* current could deflect a *magnetic* compass needle. Soon afterward, Ampère postulated that *all* magnetic phenomena are due to electric charges in motion. Then, in 1831, Faraday discovered that a moving *magnet* generates an *electric* current. By the time Maxwell and Lorentz put the finishing touches on the theory, electricity and magnetism were inextricably intertwined. They could no longer be regarded as separate subjects, but rather as two *aspects* of a *single* subject: **electromagnetism**.

Faraday speculated that light, too, is electrical in nature. Maxwell's theory provided spectacular justification for this hypothesis, and soon **optics** – the study of lenses, mirrors, prisms, interference, and diffraction – was incorporated into electromagnetism. Hertz, who presented the decisive experimental confirmation for Maxwell's theory in 1888, put it this way: "The connection between light and electricity is now established In every flame, in every luminous particle, we see an electrical process Thus, the domain of electricity extends over the whole of nature. It even affects ourselves intimately: we perceive that we possess ... an electrical organ – the eye." By 1900, then, three great branches of physics – electricity, magnetism, and optics – had merged into a single unified theory. (And it was soon apparent that visible light represents only a tiny "window" in the vast spectrum of electromagnetic radiation, from radio through microwaves, infrared and ultraviolet, to X-rays and gamma rays.)

Einstein dreamed of a further unification, which would combine gravity and electrodynamics, in much the same way as electricity and magnetism had been combined a century earlier. His **unified field theory** was not particularly successful, but in recent years the same impulse has spawned a hierarchy of increasingly ambitious (and speculative) unification schemes, beginning in the 1960s with the **electroweak** theory of Glashow, Weinberg, and Salam (which joins the weak and electromagnetic forces), and culminating in the 1980s with the **superstring** theory (which, according to its proponents, incorporates all four forces in a single "theory of everything").

⁴ Actually, the packaging itself was perfected by Oliver Heaviside.

xvii

Advertisement

At each step in this hierarchy, the mathematical difficulties mount, and the gap between inspired conjecture and experimental test widens; nevertheless, it is clear that the unification of forces initiated by electromagnetism has become a major theme in the progress of physics.

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up a bunch of electric charges *here* (and maybe shake them around). What happens to some *other* charge, over *there*? The classical solution takes the form of a **field theory**: We say that the space around an electric charge is permeated by electric and magnetic **fields** (the electromagnetic "odor," as it were, of the charge). A second charge, in the presence of these fields, experiences a force; the fields, then, transmit the influence from one charge to the other – they "mediate" the interaction.

When a charge undergoes *acceleration*, a portion of the field "detaches" itself, in a sense, and travels off at the speed of light, carrying with it energy, momentum, and angular momentum. We call this **electromagnetic radiation**. Its existence invites (if not *compels*) us to regard the fields as independent dynamical entities in their own right, every bit as "real" as atoms or baseballs. Our interest accordingly shifts from the study of forces between charges to the theory of the fields themselves. But it takes a charge to *produce* an electromagnetic field, and it takes another charge to *detect* one, so we had best begin by reviewing the essential properties of electric charge.

Electric Charge

(1) Charge comes in two varieties. We call them "plus" and "minus," because their effects tend to *cancel* (if you have +q and -q at the same point, electrically it is the same as having no charge there at all). This may seem too obvious to warrant comment, but I encourage you to contemplate other possibilities: What if there were 8 or 10 different species of charge? (In chromodynamics there are, in fact, *three* quantities analogous to electric charge, each of which may be positive or negative.) Or what if the two kinds did not tend to cancel? The extraordinary fact is that plus and minus charges occur in *exactly* equal amounts, to fantastic precision, in bulk matter, so that their effects are almost completely neutralized. Were it not for this, we would be subjected to enormous forces: a potato would explode violently if the cancelation were imperfect by as little as one part in 10^{10} .

Cambridge University Press & Assessment 978-1-009-39775-9 — Introduction to Electrodynamics David J. Griffiths Frontmatter More Information

xviii

Advertisement

(2) Charge is conserved. It cannot be created or destroyed – what there is now has always been. (A plus charge can "annihilate" an equal minus charge, but a plus charge cannot simply disappear by itself – *something* must pick up that electric charge.) So the total charge of the Universe is fixed for all time. This is called **global** conservation of charge. Actually, I can say something much stronger: Global conservation would allow for a charge to disappear in New York and instantly reappear in San Francisco (that wouldn't affect the *total*), and yet we know this doesn't happen. If the charge was in New York and it went to San Francisco, then it must have passed along some continuous path from one to the other. This is called **local** conservation of charge. Later on we'll see how to formulate a precise mathematical law expressing local conservation of charge – it's called the **continuity equation**.

(3) Charge is quantized. Although nothing in classical electrodynamics requires that it be so, the *fact* is that electric charge comes only in discrete lumps – integer multiples of the basic unit of charge. If we call the charge on the proton +e, then the electron carries charge -e; the neutron charge zero; the pi mesons +e, 0, and -e; the carbon nucleus +6e; and so on (never 7.392e, or even 1/2e).⁵ This fundamental unit of charge is extremely small, so for practical purposes it is usually appropriate to ignore quantization altogether. Water, too, "really" consists of discrete lumps (molecules), and yet, if you're taking a drink (or a bath) it's not unreasonable to think of it as a continuous fluid. This is in fact much closer to Maxwell's own view; he knew nothing of electrons and protons – he must have pictured charge as a kind of "jelly" that could be divided up into portions of any size and smeared out at will.

Units

The subject of electrodynamics is plagued by competing systems of units, which sometimes render it difficult for physicists to communicate with one another. The problem is far worse than in mechanics, where Neanderthals still speak of pounds and feet; in mechanics, at least all equations *look* the same, regardless of the units used to measure quantities. Newton's second law remains $\mathbf{F} = m\mathbf{a}$, whether it is feet–pounds–seconds, kilograms–meters–seconds, or whatever. But this is not so in electromagnetism, where Coulomb's law may appear variously as

$$\mathbf{F} = \frac{q_1 q_2}{\nu^2} \hat{\boldsymbol{\lambda}} \text{ (Gaussian), or } \mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{\nu^2} \hat{\boldsymbol{\lambda}} \text{ (SI), or } \mathbf{F} = \frac{1}{4\pi} \frac{q_1 q_2}{\nu^2} \hat{\boldsymbol{\lambda}} \text{ (HL).}$$

⁵ Actually, protons and neutrons are composed of three **quarks**, which carry fractional charges $(\pm \frac{2}{3}e \text{ and } \pm \frac{1}{3}e)$. However, *free* quarks do not appear to exist in nature, and in any event, this does not alter the fact that charge is quantized; it merely reduces the size of the basic unit.

xix

Advertisement

Of the systems in common use, the two most popular are **Gaussian** (cgs) and **SI** (mks). Elementary particle theorists favor yet a third system: **Heaviside– Lorentz**. Although Gaussian units offer distinct theoretical advantages, most undergraduate instructors seem to prefer SI, I suppose because they incorporate the familiar household units (volts, amperes, and watts). In this book, therefore, I have used SI units. Appendix C provides a "dictiona" for converting the main results into Gaussian units.