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1 Vector Analysis

1.1 Vector Algebra

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you

will have gone a total of 7 miles, but you9re not 7 miles from where you

set out 3 only 5. We need an arithmetic to describe quantities like this,

which evidently do not add in the ordinary way. The reason they don9t, of

course, is that displacements (straight line segments going from one point

to another) have direction as well as magnitude (length), and it is essential

to take both into account when you combine them. Such objects are called

vectors: velocity, acceleration, force, andmomentum are other examples. By

contrast, quantities that have magnitude but no direction are called scalars:

examples include mass, charge, density, and temperature.

I shall use boldface (A, B, and so on) for vectors and ordinary type

for scalars. The magnitude of a vector A is written |A| or, more simply,

A. In diagrams, vectors are denoted by arrows: the length of the arrow is

proportional to the magnitude of the vector, and the arrowhead indicates

its direction. Minus A (2A) is a vector with the same magnitude as A

but the opposite direction (Fig. 1.2). Note that vectors have magnitude

and direction but not location: a displacement of 4 miles due north from

Washington is represented by the same vector as a displacement 4 miles

north from Baltimore (neglecting, of course, the curvature of the Earth).

On a diagram, therefore, you can slide the arrow around at will, as long as

you don9t change its length or direction.

3 mi

5 mi

4

mi

Fig. 1.1

�AA

Fig. 1.2
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2 1 Vector Analysis
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We deone four vector operations: addition and three kinds of

multiplication.

(i) Addition of two vectors. Place the tail of B at the head of A; the sum,

A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This

rule generalizes the obvious procedure for combining two displacements.)

Addition is commutative:

A + B = B + A;

3 miles east followed by 4 miles north gets you to the same place as 4 miles

north followed by 3 miles east. Addition is also associative:

(A + B) + C = A + (B + C).

To subtract a vector, add its opposite (Fig. 1.4):

A 2 B = A + (2B).

(ii) Multiplication by a scalar. Multiplication of a vector by a posi-

tive scalar a multiplies the magnitude but leaves the direction unchanged

(Fig. 1.5). (If a is negative, the direction is reversed.) Scalar multiplication

is distributive:

a(A + B) = aA + aB.

(iii) Dot product of two vectors. The dot product of two vectors is

deoned by

A · B c AB cos θ, (1.1)
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3 1.1 Vector Algebra

where θ is the angle they form when placed tail to tail (Fig. 1.6). Note that

A · B is itself a scalar (hence the alternative name scalar product). The dot

product is commutative,

A · B = B · A,

and distributive,

A · (B + C) = A · B + A · C. (1.2)

Geometrically, A · B is the product of A times the projection of B along

A (or the product of B times the projection of A alongB). If the two vectors

are parallel, then A · B = AB. In particular, for any vector A,

A · A = A2. (1.3)

If A and B are perpendicular, then A · B = 0.

Example 1.1. Let C = A 2 B (Fig. 1.7), and calculate the dot product

of C with itself.

Solution.

C · C = (A 2 B) · (A 2 B) = A · A 2 A · B 2 B · A + B · B,

or

C2
= A2

+ B2 2 2AB cos θ.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is

deoned by

A × B c AB sin θ n̂, (1.4)

where n̂ is a unit vector (vector of magnitude 1) pointing perpendicular to

the plane of A andB. (I shall use a hat (ˆ) to denote unit vectors.) Of course,

there are two directions perpendicular to any plane: <in= and <out.= The

ambiguity is resolved by the right-hand rule: let your ongers point in the

direction of the orst vector and curl around (via the smaller angle) toward

the second; then your thumb indicates the direction of n̂. (In Fig. 1.8,A×B
points into the page; B×A points out of the page.) Note that A×B is itself

a vector (hence the alternative name vector product). The cross product is

distributive,

A × (B + C) = (A × B) + (A × C), (1.5)

but not commutative. In fact,

(B × A) = 2(A × B). (1.6)
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4 1 Vector Analysis
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Geometrically, |A × B| is the area of the parallelogram generated by A

and B (Fig. 1.8). If two vectors are parallel, their cross product is zero. In

particular,

A × A = 0

for any vector A. (Here 0 is the zero vector, with magnitude 0.)

Problem 1.1. Using the deonitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the

dot product and cross product are distributive:

(a) when the three vectors are coplanar;

(b) in the general case.

! Problem 1.2. Is the cross product associative?

(A × B) × C ?
= A × (B × C).

If so, prove it; if not, provide a counterexample (the simpler the better).

1.1.2 Vector Algebra: Component Form

In the previous section, I deoned the four vector operations (addition, scalar

multiplication, dot product, and cross product) in <abstract= form 3 that

is, without reference to any particular coordinate system. In practice, it is

often easier to set up Cartesian coordinates x, y, z and work with vector

components. Let x̂, ŷ, and ẑ be unit vectors parallel to the x-, y-, and z-axes,

respectively (Fig. 1.9a). An arbitrary vector A can be expressed in terms of

these basis vectors (Fig. 1.9b):

A = Axx̂ + Ayŷ + Azẑ.

The coefocients Ax, Ay, and Az are the <components= of A; geometrically,

they are the projections of A along the three coordinate axes (Ax = A · x̂,
Ay = A · ŷ, Az = A · ẑ). We can now reformulate each of the four vector

operations as a rule for manipulating components:

A + B = (Axx̂ + Ayŷ + Azẑ) + (Bxx̂ + Byŷ + Bzẑ)

= (Ax + Bx)x̂ + (Ay + By)ŷ + (Az + Bz)ẑ. (1.7)
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5 1.1 Vector Algebra
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Rule (i) To add vectors, add like components:

aA = (aAx)x̂ + (aAy)ŷ + (aAz)ẑ. (1.8)

Rule (ii) To multiply by a scalar, multiply each component.

Because x̂, ŷ, and ẑ are mutually perpendicular unit vectors,

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1, x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0. (1.9)

Accordingly,

A · B = (Axx̂ + Ayŷ + Azẑ) · (Bxx̂ + Byŷ + Bzẑ)

= AxBx + AyBy + AzBz. (1.10)

Rule (iii) To calculate the dot product, multiply like components, and add.

In particular,

A · A = A2
x + A

2
y + A

2
z ,

so

A =

√

A2
x + A

2
y + A

2
z . (1.11)

(This is, if you like, the three-dimensional generalization of the

Pythagorean theorem.)

Similarly,1

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0,

x̂ × ŷ = 2ŷ × x̂ = ẑ,

ŷ × ẑ = 2ẑ × ŷ = x̂,

ẑ × x̂ = 2x̂ × ẑ = ŷ.

(1.12)

Therefore,

A × B = (Axx̂ + Ayŷ + Azẑ) × (Bxx̂ + Byŷ + Bzẑ)

= (AyBz 2 AzBy)x̂ + (AzBx 2 AxBz)ŷ + (AxBy 2 AyBx)ẑ. (1.13)

1 These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the

right, z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the

signswould be reversed: x̂× ŷ = 2ẑ, and so on.We shall use right-handed systems exclusively.

Always check that you haven9t inadvertently adopted a left-handed system.
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6 1 Vector Analysis

This cumbersome expression can be written more neatly as a determinant:

A × B =

��������

x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

��������
. (1.14)

Rule (iv) To calculate the cross product, form the determinant whose orst

row is x̂, ŷ, ẑ, whose second row is A (in component form), and whose third

row is B.

Example 1.2. Find the angle between the face diagonals of a cube.

z

A

B

(0, 0, 1)

y

(0, 1, 0)

x (1, 0, 0)

θ

Fig. 1.10

Solution. Wemight as well use a cube of side 1, and place it as shown

in Fig. 1.10, with one corner at the origin. The face diagonals A and B

are

A = 1x̂ + 0ŷ + 1ẑ, B = 0x̂ + 1ŷ + 1ẑ.

So, in component form,

A · B = 1 · 0 + 0 · 1 + 1 · 1 = 1.

On the other hand, in <abstract= form,

A · B = AB cos θ =
:
2
:
2 cos θ = 2 cos θ.

Therefore,

cos θ = 1/2, or θ = 60ç.

Of course, you can get the answer more easily by drawing in a diagonal

across the top of the cube, completing the equilateral triangle. But in

cases where the geometry is not so simple, this device of comparing

the abstract and component forms of the dot product can be a very

efocient means of onding angles.

Problem 1.3. Find the angle between the body diagonals of a cube.

Problem 1.4. Use the cross product to ond the components of the unit vector n̂ perpendicular

to the shaded plane in Fig. 1.11.
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7 1.1 Vector Algebra

x

y

z

n

1
2

3
ˆ

Fig. 1.11

B

C

An

θ

ˆ

Fig. 1.12

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or

crossed with a third vector to form a triple product.

(i) Scalar triple product: A · (B × C). Geometrically, |A · (B × C) | is the
volume of the parallelepiped generated by A, B, and C, since |B ×C| is the
area of the base, and |A cos θ | is the altitude (Fig. 1.12). Evidently,

A · (B × C) = B · (C × A) = C · (A × B), (1.15)

for they all correspond to the same ogure. Note that <alphabetical= order

is preserved 3 in view of Eq. 1.6, the <nonalphabetical= triple products

A · (C × B) = B · (A × C) = C · (B × A),

have the opposite sign. In component form,

A · (B × C) =

��������

Ax Ay Az

Bx By Bz
Cx Cy Cz

��������
. (1.16)

Note that the dot and cross can be interchanged:

A · (B × C) = (A × B) · C

(this follows immediately from Eq. 1.15); however, the placement of the

parentheses is critical: (A · B) × C is a meaningless expression 3 you can9t

make a cross product from a scalar and a vector.

(ii) Vector triple product: A × (B × C). The vector triple product can be

simplioed by the so-called BAC3CAB rule:

A × (B × C) = B(A · C) 2 C(A · B). (1.17)

Notice that

(A × B) × C = 2C × (A × B) = 2A(B · C) + B(A · C)

is an entirely different vector (cross products are not associative). All

higher vector products can be similarly reduced, by repeated application

www.cambridge.org/9781009397759
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-39775-9 — Introduction to Electrodynamics
David J. Griffiths
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Vector Analysis

of Eq. 1.17, so it is never necessary for an expression to contain more than

one cross product in any term. For instance,

(A × B) · (C ×D) = (A · C)(B · D) 2 (A · D)(B · C),

A × [B × (C ×D)] = B[A · (C ×D)] 2 (A · B)(C ×D).
(1.18)

Problem 1.5. Prove the BAC3CAB rule by writing out both sides in component form.

Problem 1.6. Prove that

[A × (B × C)] + [B × (C × A)] + [C × (A × B)] = 0.

Under what conditions doesA × (B × C) = (A × B) × C?

1.1.4 Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its

Cartesian coordinates (x, y, z). The vector to that point from the origin (O)

is called the position vector (Fig. 1.13):

r c xx̂ + yŷ + zẑ. (1.19)

I will reserve the letter r for this purpose, throughout the book. Its magni-

tude,

r =

√

x2 + y2 + z2, (1.20)

is the distance from the origin, and

r̂ =
r

r
=

xx̂ + yŷ + zẑ
√

x2 + y2 + z2
(1.21)

is a unit vector pointing radially outward. The inonitesimal displacement

vector, from (x, y, z) to (x + dx, y + dy, z + dz), is

dl = dx x̂ + dy ŷ + dz ẑ. (1.22)

(We could call this dr, since that9s what it is, but it9s useful to have a special

notation for inonitesimal displacements.)

In electrodynamics, one frequently encounters problems involving two

points 3 typically, a source point, r�, where an electric charge is located, and

a oeld point, r, at which you are calculating the electric or magnetic oeld

(Fig. 1.14). It pays to adopt right from the start some shorthand notation

for the separation vector from the source point to the oeld point. I shall use

for this purpose the cursive letter :

c r 2 r�. (1.23)

Its magnitude is

= |r 2 r� |, (1.24)

www.cambridge.org/9781009397759
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-39775-9 — Introduction to Electrodynamics
David J. Griffiths
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

9 1.1 Vector Algebra
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and a unit vector in the direction from r� to r is

ˆ = =

r 2 r�

|r 2 r� |
. (1.25)

In Cartesian coordinates,

= (x 2 x�)x̂ + (y 2 y�)ŷ + (z 2 z�)ẑ, (1.26)

=

√

(x 2 x�)2 + (y 2 y�)2 + (z 2 z�)2, (1.27)

ˆ =
(x 2 x�)x̂ + (y 2 y�)ŷ + (z 2 z�)ẑ
√

(x 2 x�)2 + (y 2 y�)2 + (z 2 z�)2
(1.28)

(from which you will appreciate the economy of the script- notation).

Problem 1.7. Find the separation vector from the source point (2, 8, 7) to the oeld point

(4, 6, 8). Determine its magnitude ( ), and construct the unit vector ˆ.

1.1.5 How Vectors Transform

The2 deonition of a vector as <a quantity with a magnitude and direction=

is not altogether satisfactory: What precisely does <direction= mean? This

may seem a pedantic question, but we shall soon encounter a species of

derivative that looks rather like a vector, and we9ll want to know for sure

whether it is one.

You might be inclined to say that a vector is anything that has three

components that combine properly under addition. Well, how about this:

We have a barrel of fruit that containsNx pears,Ny apples, andNz bananas.

Is N = Nxx̂ + Nyŷ + Nzẑ a vector? It has three components, and when you

add another barrel withMx pears,My apples, andMz bananas the result is

2 This section can be skipped without loss of continuity.
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10 1 Vector Analysis
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(Nx +Mx) pears, (Ny +My) apples, (Nz +Mz) bananas. So it does add like

a vector. Yet it9s obviously not a vector, in the physicist9s sense of the word,

because it doesn9t really have a direction. What exactly is wrong with it?

The answer is that N does not transform properly when you change

coordinates. The coordinate framewe use to describe positions in space is of

course entirely arbitrary, but there is a specioc geometrical transformation

law for converting vector components from one frame to another. Suppose,

for instance, the x̄, ȳ, z̄ system is rotated by angle φ, relative to x, y, z, about

the common x = x̄-axes. From Fig. 1.15,

Ay = A cos θ, Az = A sin θ,

while

Āy = A cos θ̄ = A cos(θ 2 φ) = A(cos θ cosφ + sin θ sinφ)

= cosφAy + sinφAz,

Āz = A sin θ̄ = A sin(θ 2 φ) = A(sin θ cosφ 2 cos θ sinφ)

= 2 sinφAy + cosφAz.

We might express this conclusion in matrix notation:
(

Āy

Āz

)

=

(

cosφ sinφ

2 sinφ cosφ

) (

Ay

Az

)

. (1.29)

More generally, for rotation about an arbitrary axis in three dimensions,

the transformation law takes the form

���
�

Āx

Āy

Āz

���
�
=

���
�

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

���
�

���
�

Ax

Ay

Az

���
�
, (1.30)

or, more compactly,

Āi =

3
∑

j=1

RijAj, (1.31)

where the index 1 stands for x, 2 for y, and 3 for z. The elements of the

matrix R can be ascertained, for a given rotation, by the same sort of

trigonometric arguments as we used for a rotation about the x-axis.
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