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1 Introduction

Science is more than a collection of observed associations. While the description

and cataloging of phenomena play a role in scientiûc discovery, the ultimate goal of

science is the amalgamation of theories that have survived rigorous falsiûcation

(Hassani et al. 2018). For a theory to be scientiûc, it is generally expected to declare

the falsiûable causal mechanism responsible for the observed phenomenon (for one

deûnition of falsiûability, see Popper 1963).1Put simply, a scientiûc theory explains

why an observed phenomenon takes place, where that explanation is consistent with

all the empirical evidence (ideally, including experimental results). Economists

subscribe to this view that a genuine science must produce refutable implications,

and that those implications must be tested through solid statistical techniques

(Lazear 2000).

In the experimental sciences (physics, chemistry, biology, etc.), it is rela-

tively straightforward to propose and falsify causal mechanisms through

interventional studies (Fisher 1971). This is not generally the case in ûnancial

economics. Researchers cannot reproduce the ûnancial conditions of the Flash

Crash of May 6, 2010, remove some traders, and observe whether stock

market prices still collapse. This has placed the ûeld of ûnancial economics

at a disadvantage when compared with experimental sciences. A direct con-

sequence of this limitation is that, for the past ûfty years, most factor investing

researchers have focused on publishing associational claims, without theoriz-

ing and subjecting to falsiûcation the causal mechanisms responsible for the

observed associations. In the absence of plausible falsiûable theories,

researchers must acknowledge that they do not understand why the reported

anomalies (risk premia) occur, and investors are entitled to dismiss their

claims as spurious. The implication is that the factor investing literature

remains in an immature, phenomenological stage.

From the above, one may reach the bleak conclusion that there is no hope for

factor investing (or ûnancial economics) to produce and build upon scientiûc

theories. This is not necessarily the case. Financial economics is not the only

ûeld of study afûicted by barriers to experimentation (e.g., astronomers produce

scientiûc theories despite the unfeasibility of interventional studies). Recent

progress in causal inference has opened a path, however difûcult, for advancing

factor investing beyond its current phenomenological stage. The goal of this

1 Strict falsiûcationism is not widely accepted among philosophers of science, and throughout this

Element I do not follow Popper’s falsiûcationist framework. I use the term “falsiûable” as the

general requirement that theories must conform to the empirical evidence, without subscribing to

a particular deûnition of what such conformity entails. Mutatis mutandis, this Element accom-

modates, and its results remain valid, under a number of competing accounts of what makes

a theory “scientiûc.”
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Element is to help factor investing wake up from its associational slumber, and

plant the seeds for the new ûeld of “causal factor investing.”

In order to achieve this goal, I must ûrst recite the fundamental differ-

ences between association and causation (Section 2), and why the study of

association alone does not lead to scientiûc knowledge (Section 3). In ûelds

of research with barriers to experimentation, like investing, it has become

possible to estimate causal effects from observational studies, through

natural experiments and simulated interventions (Section 4). After laying

out this foundation, I turn the reader’s attention to the current state of causal

confusion in econometrics (Section 5) and factor investing studies

(Section 6). This state of confusion easily explains why factor investing

remains in a phenomenological stage, and the proliferation of hundreds of

spurious claims that Cochrane (2011) vividly described as the “factor zoo”2

(Section 7). The good news is, once ûnancial economists embrace the

concepts described in this Element, I foresee the transformation of factor

investing into a truly scientiûc discipline (Section 8).

This Element makes several contributions. First, I describe the logical

inconsistency that afûicts the factor investing literature, whereby authors

make associational claims in denial or ignorance of the causal content of their

models. Second, I deûne the two different types of spurious claims in factor

investing, type-A and type-B. These two types of spurious claims have

different origins and consequences, hence it is important for factor researchers

to distinguish between the two. In particular, type-B factor spuriosity is an

important topic that has not been discussed in depth until now. Type-B

spuriosity explains, among other literature ûndings, the time-varying nature

of risk premia. Third, I apply this taxonomy to derive a hierarchy of empirical

evidence used in ûnancial research, based on the evidence’s susceptibility to

being spurious. Fourth, I design Monte Carlo experiments that illustrate the

dire consequences of type-B spurious claims in factor investing. Fifth,

I propose an alternative explanation for the main ûndings of the factor

investing literature, which is consistent with type-B spuriosity. In particular,

the time-varying nature of risk premia reported in canonical journal articles is

a likely consequence of under-controlling. Sixth, I propose speciûc actions

that academic authors can take to rebuild factor investing on the more solid

scientiûc foundations of causal inference.

2 A more appropriate name might have been “factor bestiary,” because a zoo is populated only by

real animals, while a medieval bestiary described in great detail real (e.g., lions, leopards, and

elephants) as well as mythical animals (e.g. chimeras, grifûns, and harpies), with equal conviction

regarding the existence of both.
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2 Association vs Causation

Every student of statistics, and by extension econometrics, learns that

association does not imply causation. This statement, while superûcially

true, does not explain why association exists, and its relation to causation.

Two discrete random variables X and Y are statistically independent if

and only if P½X ¼ x; Y ¼ y� ¼ P½X ¼ x�P½Y ¼ y�; 8x; y, where P½:� is

the probability of the event described inside the squared brackets.

Conversely, two discrete random variables X and Y are said to be statistically

associated (or codependent) when, for some x; yð Þ, they satisfy that

P½X ¼ x; Y ¼ y� 6¼ P½X ¼ x�P½Y ¼ y�. The conditional probability expression

P½Y ¼ yjX ¼ x� ¼ P½X ¼ x; Y ¼ y�=P½X ¼ x� represents the probability

that Y ¼ y among the subset of the population where X ¼ x. When two

variables are associated, observing the value of one conveys information

about the value of the other: P½Y ¼ yjX ¼ x� 6¼ P½Y ¼ y�, or equivalently,

P½X ¼ xjY ¼ y� 6¼ P½X ¼ x�. For example, monthly drownings (Y ) and ice

cream sales (X ) are strongly associated, because the probability that y people

drown in a month conditional on observing x ice cream sales in that same month

does not equal the unconditional probability of y drownings in a month for some

x; yð Þ. However, the expression P½Y ¼ yjX ¼ x� 6¼ P½Y ¼ y� does not tell us

whether ice cream sales cause drownings. Answering that question requires

the introduction of a more nuanced concept than conditional probability: an

intervention.

A data-generating process is a physical process responsible for generating the

observeddata,where the process is characterizedby a systemof structural equations.

Within that system, a variableX is said to cause a variable Y whenY is a function of

X . The structural equation by which X causes Y is called a causal mechanism.

Unfortunately, the data-generating process responsible for observations is rarely

known. Instead, researchers must rely on probabilities, estimated on a sample of

observations, to deduce the causal structure of a system. Probabilistically, a variable

X is said to cause a variable Y when setting the value of X to x increases the

likelihood that Y will take the value y. Econometrics lacks the language to represent

interventions, that is, setting the value of X (Chen and Pearl 2013). To avoid

confusion between conditioning by X ¼ x and setting the value of X ¼ x, Pearl

(1995) introduced the do-operator, do½X ¼ x�, which denotes the intervention that

sets the value ofX to x.With this new notation, causation can be formally deûned as

follows: X ¼ x causes Y ¼ y if and only if P
�

Y ¼ yjdo½X ¼ x�
�

> P½Y ¼ y�.3

3 At ûrst, it may seem counterintuitive that causality is deûned in terms of a strict inequality (“>”),

in contrast to the difference (“6¼”) used to deûne association. The reason is, there is no need to

consider the “<” case, due to complementary probabilities. For example, let X ¼ 1 represent

3Causal Factor Investing

www.cambridge.org/9781009397292
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-39729-2 — Causal Factor Investing
Marcos M. López de Prado 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

For example, setting ice cream sales to xwill notmake y drowningsmore likely than

its unconditional probability for any pair x; yð Þ, hence ice cream sales are not a cause

of drownings. In contrast, smoking tobacco is a cause of lung cancer, because the

probability that y individuals develop lung cancer amonga collectivewhere the level

of tobacco smoking is set to x (through an intervention) is greater than the uncondi-

tional probability of y individuals developing lung cancer, for some pair x; yð Þ.4

Variables X and Y may be part of a more complex system, involving

additional variables. The causal structure of a system can be represented

through a directed acyclic graph, also denoted a causal graph.5 While a causal

graph does not fully characterize the data-generating process, it conveys topo-

logical information essential to estimate causal effects. Causal graphs declare

the variables involved in a system, which variables inûuence each other, and the

direction of causality (Pearl 2009, p. 12). Causal graphs help visualize do-

operations as the action of removing all arrows pointing toward X in the causal

graph, so that the full effect on Y can be attributed to setting X ¼ x. This is the

meaning of the ceteris paribus assumption, which is of critical importance to

economists.

The causal graph in Figure 1 tells us that Z causes X , and Z causes Y . In the

language of causal inference, Z is a confounder, because this variable introduces

receiving a vaccine against COVID-19, and Y ¼ 1 represent developing COVID-19. For an

effective vaccine, two causal statements are true. First, P
�

Y ¼ 1jdo½X ¼ 1�
�

< P½Y ¼ 1�, which

means that receiving the vaccine (X ¼ 1) reduces the likelihood of developing the disease

(Y ¼ 1). Second, P
�

Y ¼ 0jdo½X ¼ 1�
�

> P½Y ¼ 0�, which means that receiving the vaccine

(X ¼ 1) increases the likelihood of not developing the disease (Y ¼ 0). One statement cannot

be true without the other, and the redundancy is resolved by picking the latter.
4 A variable X may be a necessary cause of Y , a sufûcient cause of Y , a necessary-and-sufûcient

cause of Y , or neither a necessary-nor-sufûcient cause of Y (also known as a contributory cause).

I do not explain the difference in this Element because it is not required for the discussion that

follows.
5 Acyclic graphs have the advantage of allowing the factorization of the joint probability as

a product of conditional probabilities between ancestors and descendants only. However, cyclic

graphs may be preferred for representing bidirectional causality. Representing bidirectional

causal relationships with acyclic graphs requires explicit temporal modeling and duplication of

the graph over multiple time steps. Neither representation (cyclic or acyclic) is better, and it

depends on the modeler’s objectives. This Element focuses on the treatment of acyclic graphs,

without dismissing the usefulness of cyclic graphical models.

X

Z

1

Y

2

X

Z

Y

2

Figure 1 Causal graph of a confounder (Z), before (left) and after (right) a

do-operation
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an association between X and Y , even though there is no arrow between X and

Y . For this reason, this type of association is denoted noncausal. Following with

the previous example, weather (Z) inûuences ice cream sales (X ) and the

number of swimmers, hence drownings (Y ). The intervention that sets ice

cream sales removes arrow (1), because it gives full control of X to the

researcher (X is no longer a function of Z), while keeping all other things

equal (literally, ceteris paribus). And because X does not cause Y , setting

X ¼ x (e.g., banning the sale of ice cream, X ¼ 0) has no effect on the

probability of Y ¼ y. As shown later, noncausal association can occur for

a variety of additional reasons that do not involve confounders.

Five conclusions can be derived from this exposition. First, causality is an

extra-statistical (in the sense of beyond observational) concept, connected to

mechanisms and interventions, and distinct from the concept of association.

As a consequence, researchers cannot describe causal systems with the asso-

ciational language of conditional probabilities. Failure to use the do-operator

has led to confusion between associational and causal statements, in econo-

metrics and elsewhere. Second, association does not imply causation, how-

ever causation does imply association because setting X ¼ x through an

intervention is associated with the outcome Y ¼ y.6 Third, unlike association,

causality is directional, as represented by the arrows of the causal graph. The

statement “X causes Y” implies that P
�

Y ¼ yjdo½X ¼ x�
�

> P½Y ¼ y�, but not

that P
�

X ¼ xjdo½Y ¼ y�
�

> P½X ¼ x�. Fourth, unlike association, causality is

sequential. “X causes Y” implies that the value of X is set ûrst, and only after

that Y adapts. Fifth, the ceteris paribus assumption simulates an intervention

(do-operation), whose implications can only be understood with knowledge of

the causal graph. The causal graph shows what “other things” are kept equal

by the intervention.

6 Here I am referring to direct causes (a single link in the causal graph). There are causal structures

where one cause may cancel another, resulting in total causation without association.
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3 The Three Steps of Scientiûc Discovery

Knowing the causes of effects has long been a human aspiration. In 29 BC, ancient

Roman poet Virgil wrote “happy the man, who, studying Nature’s laws, / thro’

known effects can trace the secret cause” (Dryden 1697, p. 71). It was not until

around the year 1011 that Arab mathematician Hasan Ibn al-Haytham proposed

a scientiûc method for deducing the causes of effects (Thiele 2005; Sabra 1989).

Science has been deûned as the systematic organization of knowledge in the

form of testable explanations of natural observations (Heilbron 2003). Mature

scientiûc knowledge aims at identifying causal relations, and the mechanisms

behind them, because causal relations are responsible for the regularities in

observed data (Glymour et al. 2019).

The process of creating scientiûc knowledge can be organized around three

critical steps: (1) the phenomenological step, where researchers observe

a recurrent pattern of associated events, or an exception to such a pattern; (2)

the theoretical step, where researchers propose a testable causal mechanism

responsible for the observed pattern; and (3) the falsiûcation step, where the

research community designs experiments aimed at falsifying each component

of the theorized causal mechanism.

3.1 The Phenomenological Step

In the phenomenological step, researchers observe associated events, without

exploring the reason for that association. At this step, it sufûces to discover that

P½X ¼ x; Y ¼ y� 6¼ P½X ¼ x�P½Y ¼ y�. Further, a researcher may model the

joint distribution P½X ¼ x; Y ¼ y�, derive conditional probabilities

P½Y ¼ yjX ¼ x�, and make associational statements of the type

E½Y jX ¼ x� ¼ y (an associational prediction) with the help of machine learning

tools. Exceptionally, a researcher may go as far as to produce empirical evi-

dence of a causal effect, such as the result from an interventional study (e.g.,

Ohm’s law of current, Newton’s law of universal gravitation, or Coulomb’s law

of electrical forces), but without providing an explanation for the relationship.

The main goal of the phenomenological step is to state “a problem situation,” in

the sense of describing the observed anomaly for which no scientiûc explan-

ation exists (Popper 1994b, pp. 2–3). At this step, inference occurs by logical

induction, because the problem situation rests on the conclusion that, for some

unknown reason, the phenomenon will reoccur.7

7 Reasoning by induction occurs when, given some premises, a probable conclusion is inferred

non-reductively, by generalizing or extrapolating from speciûc cases to a general rule. The

evidence to support this extrapolation may come from a large number of cases (enumerative

induction) or a wide range of cases (variative induction). See Gensler (2010, pp. 80–117).
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For instance, a researcher may observe that the bid-ask spread of stocks

widens in the presence of imbalanced orderûow (i.e., when the amount of

shares exchanged in trades initiated by buyers does not equal the amount of

shares exchanged in trades initiated by sellers over a period of time), and that the

widening of bid-ask spreads often precedes a rise in intraday volatility. This is

a surprising phenomenon because under the efûcient market hypothesis asset

prices are expected to reûect all available information at all times, making

predictions futile (Fama 1970). The existence of orderûow imbalance, the

sequential nature of these events, and their predictability point to market

inefûciencies, of unclear source. Such associational observations do not consti-

tute a theory, and they do not explain why the phenomenon occurs.

3.2 The Theoretical Step

In the theoretical step, researchers advance a possible explanation for the

observed associated events. This is an exercise in logical abduction (sometimes

also called retroduction): Given the observed phenomenon, the most likely

explanation is inferred by elimination among competing alternatives.

Observations cannot be explained by a hypothesis more extraordinary than

the observations themselves, and of various hypotheses the least extraordinary

must be preferred (Wieten et al. 2020). At this step, a researcher states that X

and Y are associated because X causes Y , in the sense that

P
�

Y ¼ yjdo½X ¼ x�
�

> P½Y ¼ y�. For the explanation to be scientiûc, it must

propose a causal mechanism that is falsiûable, that is, propose the system of

structural equations along the causal path from X to Y , where the validity of

each causal link and causal path can be tested empirically.8 Physics Nobel Prize

laureateWolfgang Pauli famously remarked that there are three types of explan-

ations: correct, wrong, and not even wrong (Peierls 1992). With “not even

wrong,” Pauli referred to explanations that appear to be scientiûc, but use

unfalsiûable premises or reasoning, which can never be afûrmed nor denied.

A scientist may propose a theory with the assistance of statistical tools (see

Section 4.3.1), however data and statistical tools are not enough to produce

a theory. The reason is, in the theoretical step the scientist injects extra-

statistical information, in the form of a subjective framework of assumptions

that give meaning to the observations. These assumptions are unavoidable,

because the simple action of taking and interpreting measurements introduces

subjective choices, making the process of discovery a creative endeavor.

8 Following on the earlier examples, in the year 1900, Paul Drude was the ûrst to offer a falsiûable

explanation to Ohm’s law of 1827; in the year 1915, Albert Einstein offered a falsiûable explan-

ation for Newton’s law of gravitation of 1687, and so on.
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If theories could be deduced directly from observations, then there would be no

need for experiments that test the validity of the assumptions.

Following on the previous example, the Probability of Informed Trading (PIN)

theory explains liquidity provision as the result of a sequential strategic game

between market makers and informed traders (Easley et al. 1996). In the absence

of informed traders, the orderûow is balanced, because uninformed traders initiate

buys and sells in roughly equal amounts, hence market impact is mute and the

mid-price barely changes. When market makers provide liquidity to uninformed

traders, they proût from the bid-ask spread (they buy at the bid price and sell at the

ask price). However, the presence of informed traders imbalances the orderûow,

creating market impact that changes the mid-price. When market makers provide

liquidity to an informed trader, the mid-price changes before market makers are

able to proût from the bid-ask spread, and they are eventually forced to realize

a loss. As a protection against losses, market makers react to orderûow imbalance

by charging a greater premium for selling the option to be adversely selected (that

premium is the bid-ask spread). In the presence of persistent orderûow imbalance,

realized losses accumulate, andmarket makers are forced to reduce their provision

of liquidity, which results in greater volatility. Two features make the PIN theory

scientiûc: First, it describes a precise mechanism that explains the causal link:

orderûow imbalance→market impact→mid-price change→ realized losses→

bid-ask spread widening → reduced liquidity → greater volatility. Second, the

mechanism involves measurable variables, with links that are individually test-

able. An unscientiûc explanation would not propose a mechanism, or it would

propose a mechanism that is not testable.

Mathematicians use the term theory with a different meaning than scientists.

A mathematical theory is an area of study derived from a set of axioms, such as

number theory or group theory. Following Kant’s epistemological deûnitions,

mathematical theories are synthetic a priori logical statements, whereas scien-

tiûc theories are synthetic a posteriori logical statements. This means that

mathematical theories do not admit empirical evidence to the contrary, whereas

scientiûc theories must open themselves to falsiûcation.

3.3 The Falsiûcation Step

In the falsiûcation step, researchers not involved in the formulation of the theory

independently: (i) deduce key implications from the theory, such that it is impos-

sible for the theory to be true and the implications to be false; and (ii) design and

execute experiments with the purpose of proving that the implications are false.

Step (i) is an exercise in logical deduction because given some theorized prem-

ises, a falsiûable conclusion is reached reductively (Gensler 2010, pp. 104–110).
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When properly done, performing step (i) demands substantial creativity and

domain expertise, as it must balance the strength of the deduced implication

with its testability (cost, measurement errors, reproducibility, etc.). Each experi-

ment in step (ii) focuses on falsifying one particular link in the chain of events

involved in the causal mechanism, applying the tools of mediation analysis. The

conclusion that the theory is false follows the structure of a modus tollens

syllogism (proof by contradiction): using standard sequent notation, if A ) B,

however :B is observed, then :A, where A stands for “the theory is true” and B

stands for a falsiûable key implication of the theory.

One strategy of falsiûcation is to show that P
�

Y ¼ yjdo½X ¼ x�
�

¼ P½Y ¼ y�,

in which case either the association is noncausal, or there is no association (i.e.,

the phenomenon originally observed in step (i) was a statistical ûuke). A second

strategy of falsiûcation is to deduce a causal prediction from the proposed

mechanism, and to show that E
�

Y jdo½X ¼ x�
�

6¼ y. When that is the case,

there may be a causal mechanism, however, it does not work as theorized

(e.g., when the actual causal graph is more complex than the one proposed).

A third strategy of falsiûcation is to deduce from the theorized causal mechan-

ism the existence of associations, and then applymachine learning techniques to

show that those associations do not exist. Unlike the ûrst two falsiûcation

strategies, the third one does not involve a do-operation.

Following on the previous example, a researcher may split a list of stocks

randomly into two groups, send buy orders that set the level of orderûow

imbalance for the ûrst group, and measure the difference in bid-ask spread,

liquidity, and volatility between the two groups (an interventional study, see

Section 4.1).9 In response to random spikes in orderûow imbalance, a researcher

may ûnd evidence of quote cancellation, quote size reduction, and resending

quotes further away from the mid-price (a natural experiment, see

Section 4.2).10 If the experimental evidence is consistent with the proposed

PIN theory, the research community concludes that the theory has (temporarily)

survived falsiûcation. Furthermore, in some cases a researcher might be able to

inspect the data-generating process directly, in what I call a “ûeld study.”

A researcher may approach proûtable market makers and examine whether

9 Sophisticated large asset managers routinely conduct so-called algo-wheel experiments to assess

broker performance, however the results from these controlled experiments are rarely made

public, and are generally unknown to the academic community (López de Prado 2017). See

Webster and Westray (2022) for an example of a theoretical framework that covers this kind of

execution experiments.
10 Random spikes in orderûow imbalance allow researchers to observe the reaction of market

makers while removing the inûuence of potential confounders. For the purpose of this experi-

ment, a researcher is interested in orderûow imbalance ûuctuations that market makers cannot

rule out as random at their onset, however the researcher can determine to have been random

(likely ex-post).
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