### **Time Series for Economics and Finance**

Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include datasets for self-study and PowerPoint lecture slides, a solutions manual, and additional exercises for instructors. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.

**Oliver Linton** is Chair of the Faculty of Economics, a Fellow of Trinity College, and Professor of Political Economy at the University of Cambridge. He has published two books and nearly 200 articles on econometrics, statistics, and empirical finance. He was President of the Society for Financial Econometrics from 2021 to 2023 and is a Fellow of the Econometric Society, the Institute of Mathematical Statistics, and the British Academy.

# Time Series for Economics and Finance

#### **Oliver Linton**

University of Cambridge



© in this web service Cambridge University Press & Assessment



Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781009396295

DOI: 10.1017/9781009396271

© Ziggurat Associates Ltd 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009396271

First published 2025

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-39629-5 Hardback ISBN 978-1-009-39626-4 Paperback

Additional resources for this publication at www.cambridge.org/lintontimeseries

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my exceptional wife, Jianghong Song, and my children Marco, Silvia, Alexander, and Florence.

## Contents

| Li |                |         |                                                             | page xiii |  |
|----|----------------|---------|-------------------------------------------------------------|-----------|--|
| Li | List of Tables |         |                                                             |           |  |
| Pı | eface          |         |                                                             | xix       |  |
| Ac | cknowl         | edgment | ts                                                          | xxi       |  |
| No | otation        | and Co  | nventions                                                   | xxii      |  |
| 1  | Intro          | duction |                                                             | 1         |  |
| 2  | Stati          | onarity | and Mixing                                                  | 14        |  |
|    | 2.1            | Statio  | narity                                                      | 14        |  |
|    | 2.2            | Deper   | ndence                                                      | 17        |  |
|    |                | 2.2.1   | Mixing                                                      | 20        |  |
|    |                | 2.2.2   | Common Classes of Processes                                 | 22        |  |
|    | 2.3            | Estim   | ation of Mean, Autocovariance, and Autocorrelation          | 24        |  |
|    | 2.4            | Testin  | g for the Absence of Autocorrelation                        | 31        |  |
|    | 2.5            | Applie  | cation                                                      | 32        |  |
|    | 2.6            | Summ    | nary                                                        | 38        |  |
|    | 2.7            | Exerc   | ises                                                        | 39        |  |
| 3  | Linea          | ar Time | Series Models                                               | 42        |  |
|    | 3.1            | ARM     | A Models                                                    | 42        |  |
|    |                | 3.1.1   | Special Case: AR(1) With No Drift                           | 43        |  |
|    |                | 3.1.2   | Moving Average MA(1)                                        | 47        |  |
|    |                | 3.1.3   | General ARMA Case                                           | 50        |  |
|    |                | 3.1.4   | Using Stationarity to Calculate the AR(2) Autocovariance    |           |  |
|    |                |         | Function                                                    | 52        |  |
|    |                | 3.1.5   | Using Stationarity to Calculate the $AR(p)$ Autocovariance  |           |  |
|    |                |         | Function                                                    | 53        |  |
|    |                | 3.1.6   | Using Stationarity to Calculate the Autocovariance Function | n         |  |
|    |                |         | of an MA Process                                            | 55        |  |
|    |                | 3.1.7   | Representations for ARMA $(p,q)$ Processes                  | 55        |  |
|    | 3.2            | Wold    | Decomposition and Impulse Response                          | 57        |  |
|    | 3.3            | Aggre   | egation of ARMA Processes                                   | 61        |  |
|    |                | 3.3.1   | Temporal Aggregation                                        | 61        |  |
|    |                | 3.3.2   | Infrequent Sampling                                         | 62        |  |
|    |                | 3.3.3   | Superposition                                               | 62        |  |
|    |                | 3.3.4   | Transformation of ARMA Processes                            | 64        |  |

viii Contents

|   | 3.4    | Estim    | ation of ARMA Processes                                 | 64  |
|---|--------|----------|---------------------------------------------------------|-----|
|   |        | 3.4.1    | The Autoregressive Special Case                         | 65  |
|   |        | 3.4.2    | Gaussian Likelihood for the General $ARMA(p,q)$ Case    | 68  |
|   |        | 3.4.3    | Method of Moments                                       | 74  |
|   |        | 3.4.4    | Other Estimation Methods                                | 76  |
|   | 3.5    | Prope    | rties of Estimators                                     | 76  |
|   |        | 3.5.1    | The AR(1) Special Case                                  | 79  |
|   |        | 3.5.2    | The MA(1) Special Case                                  | 80  |
|   |        | 3.5.3    | Standard Errors and Inference for the ARMA $(p,q)$ Case | 82  |
|   | 3.6    | Testin   | g for the Absence of Autocorrelation Again              | 83  |
|   |        | 3.6.1    | Martingale Difference Sequence Shocks                   | 84  |
|   |        | 3.6.2    | Nonstationarity in Mean and Variance                    | 86  |
|   |        | 3.6.3    | Testing of Residual Autocorrelation                     | 88  |
|   | 3.7    | Goodi    | ness of Fit and Model Selection                         | 90  |
|   | 3.8    | Appli    | cation                                                  | 93  |
|   | 3.9    | Summ     | nary                                                    | 96  |
|   | 3.10   | Exerc    | ises                                                    | 96  |
| 4 | Spect  | tral Ana | Ilysis                                                  | 102 |
|   | 4.1    | Period   | lic Functions and the Spectral Representation           | 103 |
|   | 4.2    |          | ower Spectrum                                           | 105 |
|   | 4.3    | Filters  | 5                                                       | 108 |
|   |        | 4.3.1    | Trend                                                   | 114 |
|   |        | 4.3.2    | Economic Cycles                                         | 115 |
|   |        | 4.3.3    |                                                         | 116 |
|   | 4.4    | The P    | eriodogram and Estimation of the Spectral Density       | 118 |
|   | 4.5    | Appli    | cation                                                  | 122 |
|   | 4.6    | Summ     | nary                                                    | 126 |
|   | 4.7    | Exerc    | -                                                       | 126 |
| 5 | Infere | ence un  | der Heterogeneity and Weak Dependence                   | 129 |
|   | 5.1    | Estim    | ation of Mean and Autocovariance Function               | 129 |
|   | 5.2    | Self N   | Iormalization                                           | 134 |
|   | 5.3    | Boots    | trap Standard Errors                                    | 135 |
|   |        | 5.3.1    | The Basic Idea                                          | 135 |
|   |        | 5.3.2    | Bootstrap for Time Series                               | 137 |
|   | 5.4    | Autoc    | correlation and Regression                              | 141 |
|   |        | 5.4.1    | Bootstrap for Regression                                | 144 |
|   |        | 5.4.2    | Generalized Method of Moments                           | 144 |
|   |        | 5.4.3    | Self-Normalization Approach                             | 147 |
|   |        | 5.4.4    | Bootstrap Approach                                      | 147 |
|   | 5.5    | Summ     |                                                         | 147 |
|   | 5.6    | Exerc    | -                                                       | 148 |

|   |          | Contents                                                    | ix  |
|---|----------|-------------------------------------------------------------|-----|
| 6 | Nons     | stationary Processes, Trends, and Seasonality               | 151 |
|   | 6.1      | Ad Hoc Practical Approaches                                 | 151 |
|   | 6.2      | Deterministic Trend Models                                  | 153 |
|   |          | 6.2.1 Polynomial Trend Models                               | 153 |
|   |          | 6.2.2 Nonparametric Trend Fitting                           | 158 |
|   |          | 6.2.3 Testing for Trend                                     | 165 |
|   | 6.3      | Unit Root Processes and Stochastic Trends                   | 167 |
|   |          | 6.3.1 Explosive Process                                     | 170 |
|   |          | 6.3.2 Higher-Order Unit Roots                               | 171 |
|   |          | 6.3.3 Recurrence                                            | 172 |
|   |          | 6.3.4 Estimation in a Unit Root Setting                     | 172 |
|   |          | 6.3.5 Functional Central Limit Theorem                      | 172 |
|   |          | 6.3.6 Testing for Unit Roots                                | 175 |
|   |          | 6.3.7 Long-Memory or Fractional Processes                   | 178 |
|   | 6.4      | Seasonality                                                 | 181 |
|   |          | 6.4.1 General Framework                                     | 181 |
|   |          | 6.4.2 Deterministic Trend and Seasonal Model                | 183 |
|   |          | 6.4.3 Nonparametric Trend and Seasonal Model                | 188 |
|   |          | 6.4.4 Stochastic Seasonal Model                             | 188 |
|   | 6.5      | Application                                                 | 190 |
|   | 6.6      | Summary                                                     | 193 |
|   | 6.7      | Exercises                                                   | 193 |
| 7 | Mult     | ivariate Linear Time Series                                 | 196 |
|   | 7.1      | Second-Order Properties: Autocovariance and Autocorrelation | 196 |
|   |          | 7.1.1 Estimation and Inference about Means, Autocovariances |     |
|   |          | and Autocorrelations                                        | 199 |
|   |          | 7.1.2 Applications                                          | 202 |
|   |          | 7.1.3 The Signal Plus Noise Model                           | 204 |
|   | 7.2      | Dynamic Regression Models                                   | 206 |
|   |          | 7.2.1 Distributed Lag Model                                 | 206 |
|   |          | 7.2.2 Estimation of ADL Models                              | 209 |
|   |          | 7.2.3 Granger Causality                                     | 210 |
|   | 7.3      | Vector Autoregressive and Moving Average Models             | 210 |
|   |          | 7.3.1 Estimation and Inference                              | 215 |
|   |          | 7.3.2 Estimation of a VMA Model                             | 222 |
|   |          | 7.3.3 Structural VAR                                        | 222 |
|   |          | 7.3.4 Nonstationary VAR and Cointegration                   | 225 |
|   |          | 7.3.5 Testing for Cointegration                             | 228 |
|   | <u> </u> | 7.3.6 Large-Dimensional Case                                | 230 |
|   | 7.4      | Application                                                 | 231 |
|   | 7.5      | Summary                                                     | 233 |
|   | 7.6      | Exercises                                                   | 234 |

#### x Contents

| 8  | State | Space Models and the Kalman Filter                  | 238 |
|----|-------|-----------------------------------------------------|-----|
|    | 8.1   | State Space Models                                  | 238 |
|    |       | 8.1.1 State Space Representation of an ARMA Process | 240 |
|    | 8.2   | Kalman Filter for a Local-Level Model               | 241 |
|    | 8.3   | Likelihood Estimation                               | 244 |
|    |       | 8.3.1 Kalman Filter for Estimation of $ARMA(p,q)$   | 244 |
|    | 8.4   | Missing Data                                        | 245 |
|    | 8.5   | General State Space and the Kalman Filter           | 246 |
|    | 8.6   | Application                                         | 246 |
|    | 8.7   | Summary                                             | 249 |
|    | 8.8   | Exercises                                           | 249 |
| 9  | Baye  | sian Methods                                        | 252 |
|    | 9.1   | The Classical Setting                               | 252 |
|    | 9.2   | Time Series                                         | 255 |
|    |       | 9.2.1 ARMA Processes                                | 255 |
|    |       | 9.2.2 General Time Series Models                    | 257 |
|    | 9.3   | Markov Chain Monte Carlo                            | 259 |
|    |       | 9.3.1 Gibbs Sampling                                | 259 |
|    |       | 9.3.2 The Metropolis–Hastings Algorithm             | 259 |
|    | 9.4   | Bayesian VAR                                        | 260 |
|    |       | 9.4.1 General Setup                                 | 260 |
|    |       | 9.4.2 Priors                                        | 260 |
|    | 9.5   | Bayesian versus Frequentist                         | 262 |
|    | 9.6   | Summary                                             | 263 |
|    | 9.7   | Exercises                                           | 263 |
| 10 | Nonli | inear Time Series Models                            | 266 |
|    | 10.1  | Threshold Models and Structural Change              | 266 |
|    |       | 10.1.1 Exogenous Regime Switching                   | 266 |
|    |       | 10.1.2 Markov Switching and SETAR Models            | 269 |
|    |       | 10.1.3 Application                                  | 270 |
|    | 10.2  | Nonlinear Chaotic Processes                         | 273 |
|    | 10.3  | GARCH Models                                        | 275 |
|    |       | 10.3.1 The GARCH Model                              | 276 |
|    |       | 10.3.2 Weak Stationarity                            | 277 |
|    |       | 10.3.3 Marginal Distribution of $y_t$               | 277 |
|    |       | 10.3.4 Dependence Property                          | 278 |
|    |       | 10.3.5 Strong Stationarity                          | 282 |
|    |       | 10.3.6 Other Variations on the GARCH Model          | 284 |
|    |       | 10.3.7 Estimation of Parameters                     | 285 |
|    |       | 10.3.8 Long-Memory Processes                        | 290 |
|    |       | 10.3.9 Multivariate Models                          | 291 |

|    |       |           | (                                                | Contents | xi  |
|----|-------|-----------|--------------------------------------------------|----------|-----|
|    |       |           |                                                  |          |     |
|    | 10.4  | Copula N  | Models                                           |          | 295 |
|    | 10.5  | Models f  | for Limited Dependent Variables                  |          | 297 |
|    |       | Summar    | •                                                |          | 300 |
|    | 10.7  | Exercise  | S                                                |          | 300 |
| 11 | Nonpa | arametric | Methods and Machine Learning                     |          | 303 |
|    | 11.1  | Nonpara   | metric CDF and Quantile Estimation               |          | 303 |
|    |       | 11.1.1 A  | A Semiparametric Model of Tail Thickness         |          | 306 |
|    |       | 11.1.2 H  | Estimation of Tail Thickness                     |          | 307 |
|    |       | 11.1.3 N  | Nonparametric Dependence Testing                 |          | 309 |
|    | 11.2  | Nonpara   | metric Smoothing                                 |          | 310 |
|    |       |           | Density Estimation                               |          | 311 |
|    |       |           | Regression and Autoregression                    |          | 315 |
|    |       |           | Large-Sample Properties of Kernel Estimators     |          | 327 |
|    |       | 11.2.4 0  | Cross-Validation                                 |          | 331 |
|    |       | 11.2.5 (  | Conditional CDF and Conditional Quantile         |          | 332 |
|    |       | 11.2.6 I  | Locally Stationary Processes                     |          | 334 |
|    |       | 11.2.7 F  | Regression Discontinuity / Structural Change     |          | 334 |
|    | 11.3  | Large-Di  | imensional Models                                |          | 336 |
|    |       | 11.3.1 N  | Moderate High-Dimensional Models                 |          | 338 |
|    |       |           | High-Dimensional Models                          |          | 339 |
|    |       | 11.3.3    | The LASSO Estimator                              |          | 339 |
|    |       | 11.3.4 \$ | SCAD                                             |          | 342 |
|    |       | 11.3.5 (  | OCMT                                             |          | 343 |
|    |       | 11.3.6 \$ | Selection of Tuning Parameters                   |          | 344 |
|    | 11.4  | Summar    | у                                                |          | 344 |
|    | 11.5  | Exercise  | S                                                |          | 344 |
| 12 | Conti | nuous-Tin | ne Processes                                     |          | 347 |
|    | 12.1  | Brownia   | n Motion                                         |          | 347 |
|    | 12.2  | Stochast  | ic Integrals                                     |          | 348 |
|    | 12.3  | Diffusion | n Processes                                      |          | 349 |
|    |       | 12.3.1 \$ | Stationarity                                     |          | 351 |
|    |       | 12.3.2 I  | ltô's Lemma, Rule, Formula, or Theorem           |          | 352 |
|    |       | 12.3.3 H  | Examples                                         |          | 352 |
|    | 12.4  | Estimatio | on of Diffusion Models                           |          | 354 |
|    |       | 12.4.1 F  | Parametric, Semiparametric, and Nonparametric Mo | dels     | 354 |
|    |       | 12.4.2 I  | Data and Asymptotic Framework                    |          | 354 |
|    |       | 12.4.3    | The Identification Issue                         |          | 355 |
|    |       | 12.4.4 M  | Maximum Likelihood Method for Parametric Diffus  | sion     |     |
|    |       | Ν         | Models in the Long-Span Case                     |          | 357 |
|    |       | 12.4.5    | Generalized Method of Moments Estimation for Lor | ng Span  | 360 |

xii Contents

|     |         | 12.4.6    | Nonparametric and Semiparametric Approaches in Long        | 261 |
|-----|---------|-----------|------------------------------------------------------------|-----|
|     |         | 10.47     | Span                                                       | 361 |
|     |         | 12.4.7    | Nonparametric and Semiparametric Approaches: Infill        | 262 |
|     | 10.5    | Detimot   | Asymptotics                                                | 362 |
|     | 12.5    | Data      | tion of Quadratic Variation Volatility from High-Frequency | 364 |
|     |         |           | Quadratic Variation                                        | 364 |
|     |         |           | Realized Volatility                                        | 365 |
|     |         |           | Microstructure Error Model                                 | 367 |
|     | 12.6    | Summa     |                                                            | 371 |
|     | 12.0    |           |                                                            | 371 |
|     | 12.7    | LACICIS   |                                                            | 571 |
| 13  | Forec   | asting    |                                                            | 374 |
|     | 13.1    | Objecti   | ve Measure of Forecast Performance                         | 374 |
|     | 13.2    | Forecas   | sting in ARMA Models                                       | 375 |
|     |         | 13.2.1    | Forecasting in the AR(1) Case                              | 375 |
|     |         | 13.2.2    | Forecasting in the $AR(\infty)$ Model                      | 378 |
|     |         | 13.2.3    | Forecasting Transformations                                | 379 |
|     | 13.3    | Other F   | Forecasting Methods and Contexts                           | 381 |
|     |         | 13.3.1    | EWMA Forecasting                                           | 381 |
|     |         | 13.3.2    | Regression Forecasting                                     | 383 |
|     |         |           | Nonparametric Case                                         | 383 |
|     | 13.4    | Forecas   | st Evaluation                                              | 385 |
|     |         | 13.4.1    | Record of Macroeconomic Forecasters                        | 386 |
|     |         | 13.4.2    | Record of Financial Market Forecasters                     | 387 |
|     |         | 13.4.3    | Record of Weather Forecasters                              | 389 |
|     |         | 13.4.4    | Statistical Tests about Forecasts                          | 390 |
|     | 13.5    |           | st Combination                                             | 391 |
|     | 13.6    | Applica   | ation                                                      | 391 |
|     | 13.7    |           | -                                                          | 394 |
|     | 13.8    | Exercis   | es                                                         | 395 |
| Ар  | pendic  |           |                                                            |     |
|     |         | ourier Ai | •                                                          | 397 |
|     |         |           | nd Multivariate Normal                                     | 398 |
|     |         |           | arge Numbers and Central Limit Theorems                    | 401 |
|     |         |           | Data Sources                                               | 405 |
|     | ΕA      | Short In  | ntroduction to EViews                                      | 409 |
| Bil | bliogra | phy       |                                                            | 411 |
| Inc | dex     |           |                                                            | 428 |
|     |         |           |                                                            |     |

# **Figures**

| 1.1  | S&P500 daily stock closing price                                    | page 3 |
|------|---------------------------------------------------------------------|--------|
| 1.2  | Daily one-month maturity T-bill rate                                | 4      |
| 1.3  | Daily yuan/dollar exchange rate and percentage change               | 4      |
| 1.4  | Daily level of VIX, 1990–2020                                       | 5      |
| 1.5  | US monthly unemployment rate, not seasonally adjusted               | 5      |
| 1.6  | US monthly industrial production, not seasonally adjusted           | 6      |
| 1.7  | US monthly inflation rate                                           | 6      |
| 1.8  | US consumption growth since 1959                                    | 7      |
| 1.9  | Oxford monthly average daily maximum temperature                    | 8      |
| 1.10 | Toronto monthly average daily maximum time series by month          | 9      |
| 1.11 | Cambridge half-hourly temperature                                   | 10     |
| 1.12 | Weekly Scottish mortality, 1974–2019                                | 10     |
| 1.13 | Arbuthnot data on annual live births in London.                     | 11     |
| 1.14 | Arbuthnot's sex ratio.                                              | 11     |
| 1.15 | United Kingdom daily new COVID-19 cases                             | 12     |
| 2.1  | ACF and PACF of daily S&P500 stock returns along with the Bartlett  |        |
|      | 95% confidence bands                                                | 32     |
| 2.2  | ACF and PACF of daily VIX level along with the Bartlett 95% confi-  |        |
|      | dence bands                                                         | 33     |
| 2.3  | ACF and PACF of monthly unemployment in the USA, not seasonally     |        |
|      | adjusted                                                            | 34     |
| 2.4  | ACF and PACF of growth in monthly personal consumption expenditure, |        |
|      | seasonally adjusted                                                 | 35     |
| 2.5  | ACF and PACF of growth in monthly industrial production in USA, not |        |
|      | seasonally adjusted                                                 | 35     |
| 2.6  | ACF and PACF of monthly inflation in USA, not seasonally adjusted   | 36     |
| 2.7  | ACF and PACF of monthly average daily maximum temperature at        |        |
|      | Oxford since 1850                                                   | 36     |
| 2.8  | ACF and PACF of the number of female births in London, 1629–1700    | 37     |
| 2.9  | ACF and PACF of the ratio of male to female births in London, 1629- |        |
|      | 1700                                                                | 37     |
| 2.10 | ACF and PACF of the Cambridge half-hourly temperature               | 38     |
| 3.1  | Stationary region of the AR(2) process                              | 52     |
| 3.2  | ACF of the process $y_t = -0.532y_{t-2} + \varepsilon_t$            | 54     |
| 3.3  | Impulse response function of an AR(2) process                       | 61     |
| 3.4  | ACF of daily S&P500 returns along with Bartlett bands (solid) and   |        |
|      | heteroskedasticity-consistent bands (dashed)                        | 85     |
| 3.5  | Plot of BIC against AR and MA orders                                | 94     |
|      |                                                                     |        |

#### xiv List of Figures

| 3.6  | BIC criterion for $AR(p)$ models                                           | 95  |
|------|----------------------------------------------------------------------------|-----|
| 4.1  | Theoretical ACF and sample ACF for particular realizations of $a, b$ for   |     |
|      | T = 128                                                                    | 104 |
| 4.2  | Transfer functions of Butterworth filters for different values of $n$      | 111 |
| 4.3  | Transfer function of a moving average filter                               | 113 |
| 4.4  | Gain of the differencing filter                                            | 113 |
| 4.5  | Logarithm of daily closing price of S&P500 along with five-year smooth     |     |
|      | and first difference                                                       | 115 |
| 4.6  | Weekly Scottish mortality along with 52-week smooth and first differ-      |     |
|      | ence                                                                       | 116 |
| 4.7  | Monthly unemployment along with 12-month smooth and first differ-          |     |
|      | ence                                                                       | 117 |
| 4.8  | Oxford monthly maximum temperature along with 12-month smooth              |     |
|      | and first difference                                                       | 118 |
| 4.9  | Periodogram and raw data in the case that $\lambda = 0.75\pi$              | 123 |
| 4.10 | Periodogram and raw data in the case that $\lambda = 0.01\pi$              | 123 |
| 4.11 | Periodogram of monthly growth in industrial production                     | 124 |
| 4.12 | Periodogram of daily return on the S&P500, 1927–2020                       | 124 |
| 4.13 | Estimated spectral density of monthly growth in industrial production      | 125 |
| 4.14 | Estimated spectral density of daily return on the S&P500, 1927–2020        | 125 |
| 5.1  | Subsample distribution of sample mean of stock returns                     | 140 |
| 5.2  | Subsample distribution of the first-order autocorrelation                  | 140 |
| 5.3  | Subsample distribution of the first-order autocorrelation of squared       |     |
|      | returns                                                                    | 141 |
| 6.1  | Rolling window Box–Pierce statistic for market factor excess return        | 153 |
| 6.2  | Sornette's nonlinear crash model                                           | 158 |
| 6.3  | Bollinger bands for 2020                                                   | 159 |
| 6.4  | Conditional mean smooth of S&P500 daily returns on $x_t = t/T$             | 162 |
| 6.5  | Daily logarithm of UK COVID-19 new cases (+1) and deaths (+1) along        |     |
|      | with the global quadratic trend                                            | 165 |
| 6.6  | Local linear trend fitted with automatic bandwidth to Arbuthnot's sex      |     |
|      | ratio along with the raw data                                              | 166 |
| 6.7  | Random walks with $y_0 = 0$ and standard normal innovations                | 169 |
| 6.8  | Maximum temperature in Oxford by year, plotted against month of the        |     |
|      | year                                                                       | 183 |
| 6.9  | Profiled sum of squared regression residuals                               | 186 |
| 6.10 | Original unrestricted seasonal coefficients along with a trigonometric fit | 187 |
| 6.11 | Frequency of birth by day of the year, US and UK                           | 187 |
| 6.12 | STL of log of monthly unemployment with quartic trend                      | 191 |
| 6.13 | STL of the level of monthly unemployment (not seasonally adjusted)         | 191 |
| 6.14 | STL decomposition of daily UK COVID data using a quartic polynomial        |     |
|      | and day of the week dummies                                                | 192 |
| 6.15 | STL based on kernel smoothing                                              | 192 |
| 7.1  | For S&P500 daily returns, $cov(r_t, r_{t+i}^2)$                            | 202 |
| 7.2  | For S&P500 and SSEC daily returns, $cov(r_t^{US}, r_{t+i}^{China})$        | 203 |

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-39629-5 — Time Series for Economics and Finance Oliver Linton Frontmatter <u>More Information</u>

| 7.3   | Log of GDP and log of PCE                                                             | 226 |
|-------|---------------------------------------------------------------------------------------|-----|
| 7.4   | Contemporaneous relationship between inflation and unemployment                       | 231 |
| 7.5   | Impulse response function from bivariate VAR of inflation and unem-                   |     |
|       | ployment                                                                              | 232 |
| 7.6   | Impulse response function from bivariate VAR of inflation and unem-                   |     |
|       | ployment, Cholesky factor                                                             | 233 |
| 8.1   | Quarterly log of GDP with local-level fitting                                         | 247 |
| 8.2   | Prediction error of US quarterly GDP, $y_t - \alpha_{t t-1}$                          | 247 |
| 8.3   | Gamestop log stock price with local level                                             | 248 |
| 8.4   | Gamestop returns                                                                      | 248 |
| 8.5   | Gamestop prediction error                                                             | 249 |
| 10.1  | Forward and backward estimation windows                                               | 268 |
| 10.2  | Log likelihood of trend break model for quarterly log of US GDP, 1947–2023/3          | 271 |
| 10.3  | Forward and backward trend slope estimates based on samples $y_{1:T_1}$ and           | 271 |
| 10.5  |                                                                                       | 271 |
| 10.4  | $y_{T_1+1:T}$<br>Time series plot of GDP along with broken trend model, with break in | 2/1 |
| 10.4  | 1980Q1                                                                                | 272 |
| 10.5  | FTSE 100 daily stock returns, threshold AR(1) process. Likelihood of                  | 212 |
| 10.5  | break point                                                                           | 272 |
| 10.6  | Forward and backward AR(1) fits to stock return, samples $y_{1:T_1}$ and              | 212 |
| 10.0  | $y_{T_1+1:T}$ and $y_{T_1+1:T}$                                                       | 272 |
| 10.7  | FTSE 100 daily stock returns, switching MA process. Likelihood of                     | _/_ |
| 1017  | break point                                                                           | 273 |
| 10.8  | Forward and backward sample MA(1) fits to stock return, samples $y_{1:T_1}$           |     |
|       | and $y_{T_1+1:T}$                                                                     | 273 |
| 10.9  | Time series of transformed chaotic map                                                | 274 |
| 10.10 | Time series of Gaussian white noise                                                   | 274 |
| 10.11 | ACF of the daily S&P500 returns and of the absolute value of returns                  |     |
|       | out to 1000 lags                                                                      | 276 |
| 10.12 | Conditional standard deviation of daily returns of S&P500 daily returns               | 280 |
| 10.13 | Standardized residuals of S&P500 daily returns                                        | 281 |
| 10.14 | Stationary region for the Gaussian GARCH(1,1) model                                   | 283 |
| 10.15 | The stationary region for a GARCH(1,1) process with Cauchy errors,                    |     |
|       | $\beta^{1/2} + \gamma^{1/2} < 1$                                                      | 284 |
| 10.16 | Comparison of the estimated news impact curves from GARCH(1,1) and                    |     |
|       | GJR(1,1) for daily S&P500 returns                                                     | 285 |
| 10.17 | Goals scored by Arsenal and opponents during 38 Premier League                        |     |
|       | matches in the 2022/23 season                                                         | 298 |
| 11.1  | Estimated and integrated CDFs of daily stock returns for Facebook,                    |     |
|       | Google, Amazon, Apple, and Microsoft.                                                 | 305 |
| 11.2  | Estimation of tail thickness parameters of daily S&P500 stock returns                 |     |
|       | by threshold level.                                                                   | 309 |
| 11.3  | Quantilogram of daily Fama-French market returns out to 66 lags, for                  |     |
|       | different $\alpha$ values                                                             | 310 |
|       |                                                                                       |     |

#### xvi List of Figures

| 11.4  | Different kernels: uniform, triangular, quadratic, Gaussian, and exponential                                                                                         | 312 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 11.5  | S&P500 daily return kernel density estimate along with a normal distribution                                                                                         | 313 |
| 11.6  | Density plot of daily VIX closing prices along with normal density with the same mean and variance. The bandwidth is Silverman rule of thumb, sample size $T = 8328$ | 314 |
| 11.7  | Density plot of daily $log(VIX)$ along with normal density with the same mean and variance. The bandwidth is Silverman rule of thumb, $h = 0.000$                    |     |
|       | 0.061                                                                                                                                                                | 314 |
| 11.8  | Marathon time kernel density estimate                                                                                                                                | 315 |
| 11.9  | Simulated data and kernel estimate                                                                                                                                   | 318 |
| 11.10 | Data, true regression, and estimated regression for different bandwidths.                                                                                            |     |
|       | No noise case. $y = \sin(2\pi x), x_i = i/n, n = 100$                                                                                                                | 318 |
| 11.11 | Unit noise case. $y = \sin(2\pi x) + \varepsilon$ , $\varepsilon \sim N(0, 1)$ , $x_i = i/n$ , $n = 100$                                                             | 319 |
| 11.12 | Conditional mean smooth of daily S&P500 stock returns on own lags,                                                                                                   |     |
|       | that is, $x_t = y_{t-1}$                                                                                                                                             | 319 |
| 11.13 | Conditional standard deviation smooth of daily S&P500 stock returns                                                                                                  |     |
|       | on own lags, that is, $x_t = y_{t-1}$                                                                                                                                | 320 |
| 11.14 | Male and female marathon times regression smoother against age                                                                                                       | 320 |
| 11.15 | Kernel, local linear, nearest neighbor, and sieve estimators of a regres-                                                                                            |     |
|       | sion function                                                                                                                                                        | 325 |
| 11.16 | Conditional VAR <sub>0.01</sub> (lower quantile) smooth of daily S&P500 stock matures on $r = t/T$                                                                   | 222 |
| 11 17 | returns on $x_t = t/T$                                                                                                                                               | 333 |
| 11.17 | One-year rolling window structural break test; S&P500 daily stock returns                                                                                            | 336 |
| 11.18 | Five-year rolling window structural break test; S&P500 daily stock                                                                                                   |     |
|       | returns                                                                                                                                                              | 337 |
| 11.19 | Comparison of LASSO and SCAD for $a = 3$ and $\lambda = 1$                                                                                                           | 343 |
| 12.1  | Volatility signature plot                                                                                                                                            | 367 |
| 13.1  | EWMA weights and exponential kernel                                                                                                                                  | 382 |
| 13.2  | MACD and signal for daily Amazon closing prices from 2020                                                                                                            | 382 |
| 13.3  | Forecast of COVID-19 new daily cases for UK made on June 5, 2020                                                                                                     | 384 |
| 13.4  | Quarterly Amazon earnings per share along with forecast based on                                                                                                     |     |
|       | quarterly dummies and quadratic trend                                                                                                                                | 389 |
| 13.5  | Random walk forecast of log of stock prices                                                                                                                          | 392 |
| 13.6  | Trend forecast of log of S&P500                                                                                                                                      | 393 |
| 13.7  | Random walk model forecast of stock price level                                                                                                                      | 394 |
| 13.8  | Deterministic trend-based forecast of stock price level                                                                                                              | 394 |

# Tables

| 3.1  | AR(5) model estimates for Tmax data and different standard errors       | page 93 |
|------|-------------------------------------------------------------------------|---------|
| 3.2  | AR(5) model estimates for VIX data and different standard errors        | 93      |
| 3.3  | AR(5) model estimates for Arbuthnot sex ratio data and different stand- |         |
|      | ard errors                                                              | 94      |
| 3.4  | Model-selected AR(9) model estimates for VIX data and standard errors   | 95      |
| 3.5  | Model-selected AR(13) model estimates for unemployment and standard     |         |
|      | errors                                                                  | 96      |
| 5.1  | Test of zero mean of S&P500 stock returns and zero autocorrelations     | 134     |
| 6.1  | Rolling window Box-Pierce statistic for daily S&P500 stock returns      | 152     |
| 6.2  | Toronto temperature trends by month                                     | 167     |
| 6.3  | Dickey–Fuller critical values                                           | 176     |
| 7.1  | VAR(2) for unemployment and inflation                                   | 232     |
| 10.1 | GARCH(1,1) parameter estimates                                          | 280     |
| 10.2 | Estimation of asymmetric GJR GARCH model                                | 285     |
| 10.3 | Daily GARCH in mean <i>t</i> -error                                     | 289     |
| 10.4 | Estimated <i>d</i> by frequency                                         | 291     |
| 13.1 | Performance of difference central banks in forecasting inflation        | 387     |
| 13.2 | Amazon quarterly earnings per share forecast and outturn                | 389     |

### Preface

This work grew out of my teaching and research. Unfortunately, as a student I missed the glory days of the LSE Time Series School, and so this book will not cover general to specific modelling or parsimonious encompassing, but I try to cover the relevant tools of modern time series analysis as practiced by econometricians, now. There are so many excellent time series books, varying from the extremely rigorous like Brockwell and Davis (2006) to extremely practical books with only computer code and no justifications or understanding, and my book is somewhere in between. Time series is a bizarrely neglected topic in many econometrics and statistics graduate programs, and is facing new challenges from the machine learning community, whose main target of prediction is one historically treated under time series. I think an understanding of the key principles underlying dynamic models and their application is still very valuable for a lot of practical work in economics and finance. I have tried to update the classic corpus in the direction of where empirical practice is in economics and finance, including discussions about alternative inference methods like bootstrap that can be justified under weaker assumptions than in the classical setting. I also include material on smoothing methods, which are about flexible functional form where nonlinearity is potentially an issue, and so-called machine learning methods designed to accommodate large numbers of predictor variables. These methods are justly celebrated for their potential to improve predictions, and no doubt will take more central stage in graduate education in the future. I include some proofs, but in other cases refer the reader to where the original can be found. I left forecasting to the end, because it is about anticipating the future.

The book is intended to be used as a text for advanced undergraduates and graduate students in economics, finance, and statistics who are interested in time series, its applications, and the methodology needed to understand and interpret those applications. Some prerequisites include a course that covers probability, statistics, and linear regression, the ideas of which are central to the study of time series, along with some basic knowledge of matrices and linear algebra. In the interests of space I do not provide a full set of background results in linear algebra and econometrics, just the bare minimum of definitions. Likewise, I do not provide explicit help in programming. The book allows for different selections of material depending on the needs of students and instructors. One could just cover linear time series, including Chapters 2–9 and Chapter 13. One could instead cover nonlinear and nonparametric methods through Chapters 10–13. I have taught parts of this material at Yale University, the London School of Economics, the University of Cambridge, Humboldt University, Shandong University, SHUFE, Renmin University, and Minho University, and I thank the many students for their feedback over the years.

The book contains many terms in bold face, which can then be investigated further by internet search. In terms of software resources, EViews is a very useful package that does a lot of the procedures in this book, and I use it in some of the empirical illustrations

#### xx Preface

included. However, it is not free and it has some limitations. R is free software with many shared user-created packages for doing everything from data scraping to Bayesian vector autoregression, and is highly recommended. A full list of available R packages can be found at https://cran.r-project.org. Ancillary materials include datasets (see Appendix D for detailed descriptions), the figures included throughout the book, some code in different languages such as MATLAB, GAUSS, and R, and an instructor's manual. They are available online at www.cambridge.org/lintontimeseries.

# Acknowledgments

I would like to thank all my current and former colleagues, coauthors, PhD students, and postdocs. I would like to thank Seok Young Hong, Weiguang Liu, and anonymous referees for comments. I thank Rowan Groat at Cambridge University Press for help with the manuscript and for guiding me through the process.

### **Notation and Conventions**

- In this book I use the dating convention yyyymmddhhmmss.
- I use → to denote convergence in probability and ⇒ to denote weak convergence (or convergence in distribution).
- log(x) is the natural logarithm unless otherwise stated.
- ℝ is the set of real numbers, C is the set of complex numbers including i = √-1, Z is
   the set of integers 0, ±1, ±2, ..., and N is the set of positive integers 1,2,...
- ' denotes differentiation.
- <sup>T</sup> denotes matrix transpose.
- I say 1(A) = 1 if the event A is true and zero otherwise.
- I use  $X_n = O(n)$  to mean that  $X_n/n$  is bounded for a deterministic sequence  $X_n$  as  $n \to \infty$ , and for a stochastic sequence I use the Landau  $O_P$ ,  $o_P$  notation. Specifically, for a sequence of random variables  $X_n$ , I write  $X_n = o_P(\delta_n)$  if  $\delta_n^{-1}X_n \xrightarrow{P} 0$  for deterministic  $\delta_n \to 0$  as  $n \to \infty$ . I write  $X_n = O_P(\delta_n)$  if essentially there is a random variable X for which  $|\delta_n^{-1}X_n| \le X$  for large n.
- I use  $\simeq$  to generically denote an approximation.
- I use  $\sim$  to mean to have the same distribution as.
- I do not have a bracketing convention like some journals, but I do have a preference for round curved things over square ones.