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1 Introduction

This book is about time series data, that is, data that are recorded in sequence. Time

series have some special features due to the ordering in time. Our analytic framework

is to suppose that the outcomes we observe are realizations from some population of

random variables or stochastic process. For each t in some set T , yt : Ω → R is a random

variable with realization yt(ω), where ω ∈ Ω is some underlying sample space. For each

ω, the set {yt(ω), t ∈ T } is called the sample path or trajectory. For each t ∈ T , the

collection {yt(ω), ω ∈ Ω} is the set of potential outcomes of the random variable yt, of

which we observe precisely one. We may de昀椀ne the distribution of the random variable

yt and its moments for each t with respect to ω ∈ Ω. The key thing here is to de昀椀ne the

joint distribution of each sequence yt1 , . . . , ytn , where ti ∈ T for i = 1, . . . , n, but this

requires some detail about the relationship between the random variables.

We may have observation times that are not equally spaced. For example, stock mar-

kets are closed at weekends and during holidays. For some data, such as intraday 昀椀nancial

transaction prices, the observation times themselves can be considered the outcomes of

some stochastic process, which can interact with the observations themselves. For the

most part we deal with equally spaced observations where the observation times are

assumed without loss of generality to be integers. We also for the most part deal essen-

tially with the case where the random variables are continuous, meaning they take values

in the real line rather than in a more restricted domain. There are special issues to do

with, say, binary or integer-valued time series and we will consider these toward the end.

We may observe a trajectory or orbit of values {y1, . . . , yT}, which is one draw from

the stochastic process, but under certain conditions we are able to use this sample to learn

about the population properties of the process, which concern all ω ∈ Ω. The analysis

usually consists of modelling, that is, describing the laws of motion of the time series in

a parsimonious fashion re昀氀ecting subject knowledge and data features, estimation of the

parameters of the model based on the sample of data, testing hypotheses about parameters

of the model, and forecasting future values of the series. The analysis may be motivated

by the quest for understanding, or there may be a concrete objective to evaluate the effects

or potential effects of a government policy or some other intervention.

Many time series books start by talking about the additive decomposition of a series yt,

where yt may be some transformation of the raw data (such as the logarithm or logistic),

into components, that is,

yt = Tt + St + Ct + Et, (1.1)

where Tt is the trend component, St is the seasonal component, Ct is the cyclical com-

ponent, and Et is the error term. We have to de昀椀ne what makes T a trend, what makes
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2 1 Introduction

S a seasonal component, and what makes C a cyclical component, otherwise this is a

meaningless decomposition; we will take this up later. Roughly speaking, a trend is a

persistent upward or downward movement, a seasonal component is a regular periodic

variation (of known period) coinciding with speci昀椀c calendar features, such as days of

the week, months of the year, and so on, and a cycle is a more nebulous concept involv-

ing quasi-periodic behavior of unknown horizons. In economics, there are several named

cycles: the Kitchin cycle of around 3–5 years, the Juglar cycle of around 7–11 years,

the Kuznets cycle of around 15–25 years, and the Kondratiev wave of 45–60 years.

The National Bureau of Economic Research (NBER) dates US business cycle peaks and

troughs, according to their de昀椀nition.1 In climate science, there are many known cycles

of varying lengths, from 30 days to thousands of years, such as the El Niño southern oscil-

lation (around 2–7 years) and the glacial cycles, the Brückner–Egerson–Lockyer cycle

of length 30–40 years, and so on.

Economists often want to work with “deseasonalized” data, which amounts to esti-

mating the component St and subtracting it from yt; central banks and many others have

developed sophisticated methodologies to do this. In some cases, economists want to

work with “detrended” data, to abstract from whatever is causing the growth over time

in a variable and to focus on the short-run 昀氀uctuations, which may be in昀氀uenced by

macroeconomic policy. Finally, there are some applications where it is common to work

with “decycled” data. For example, cyclically adjusted government budget de昀椀cits are

favored by some economists as better re昀氀ecting the true balance in public 昀椀nances, tak-

ing account of automatic adjustments that occur through a business cycle. Private sector

companies are not allowed to decycle their earnings and costs in their public announce-

ments; there are accounting tools at their disposal that allow them to smooth earnings

and costs to some extent. Campbell and Shiller (1988) introduced the cyclically adjusted

price to earnings (CAPE) ratio that tries to remove the short-term cyclical variation in

announced earnings to give a more appropriate measure of the state of the stock market.

In climate science, the focus has been on the trend part of the process, or indeed whether

there is a trend and how big it is; this trend is usually called the anomaly and de昀椀ned as

the departure of the temperature from a long-term average such as the twentieth-century

global average temperature.

The decomposition in (1.1) raises identi昀椀cation issues: Canwe distinguish a trend from

a long cycle? Can we distinguish a seasonal component from a trend? To implement this

we need further modelling assumptions. One approach is to use deterministic trends and

seasonal components. A second approach, called structural time series modelling, is to

use random walks over and over and over again to model the trend and the seasonal. Both

approaches involve applying different linear transformations to the data in sequence to

deliver the separate components.

I view the decomposition in (1.1) really as a metaphor, reminding us that the key fea-

tures of a time series are its trend (or lack thereof) and its seasonality (or periodicity

more generally); we may have a more complicated and holistic model. We 昀椀rst show a

few datasets to illustrate some of the issues.

1
That is, two consecutive quarters of negative GDP growth; see www.nber.org/research/business-cycle-dating.
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Figure 1.1 S&P500 daily stock closing price.

We next consider, in Figures 1.1–1.15, some empirical examples. The datasets are

available from www.cambridge.org/lintontimeseries and are detailed in Appendix D.

The 昀椀rst dataset, sp500, is the Standard and Poor’s (S&P) 500 index level,

Figure 1.1, which shows a substantial upward trend with several visible reversals of

nontrivial duration (bear markets). The key feature here is the trend.

The next series, Figure 1.2, is the daily observed short-term interest rate on US gov-

ernment securities, speci昀椀cally the one-month T-bill, that is, the contract length is one

month but the observation frequency is daily, taken from the dataset ffdaily. This series

has some wandering up and down around its mean level but does not appear to have a

very strong trend in comparison with stock prices; the level of this series was for a while

very close to zero, which is an effective lower bound.

We next show the Chinese yuan / US dollar exchange rate from the series cnyusd

along with its percentage change or return (Figure 1.3). The rate was 昀椀xed until 2005 and

then effectively 昀椀xed again between 2008 and 2010, but otherwise shows some upward

and downward variation in a modest range with no substantial trend in evidence. The

return series (the time difference of the logarithm of price) shows the variation in more

detail, as well as the occasional big movements associated with the depegging and other

events.

The next series, Figure 1.4, is the daily closing price of the VIX futures contract, from

the series VIX. This series also appears not to have a strong trend but rather certain cycles

or waves of up and down motion along with occasional big moves such as during the

昀椀nancial crisis and at the beginning of the COVID-19 pandemic.

We next show the US unemployment rate (the percentage of the work force currently

unemployed), which is reported monthly, taken from the series UNRATENSA (Figure 1.5).
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Figure 1.2 Daily one-month maturity T-bill rate.
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Figure 1.3 Daily yuan/dollar exchange rate and percentage change.
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Figure 1.4 Daily level of VIX, 1990–2020.
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Figure 1.5 US monthly unemployment rate, not seasonally adjusted.

This series shows the recent COVID spike, along with other boom and bust periods.

The series has a pronounced seasonality, because unemployment is lower in the summer

and around Christmas time, which is why it is more common to show the seasonally

adjusted rate.

www.cambridge.org/9781009396295
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-39629-5 — Time Series for Economics and Finance
Oliver Linton
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 1 Introduction

120

100

80

60

40

20

0

1910 1930 1950 1970 1990 2010 2030

Figure 1.6 US monthly industrial production, not seasonally adjusted.
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Figure 1.7 US monthly in昀氀ation rate.

Figure 1.6 shows the US monthly industrial production index, the series INDPRO. This

series also shows the recent COVID spike, along with other boom and bust periods.

The series has a pronounced upward trend due to economic growth and also seasonality

similar to the unemployment series.

We next show the US monthly CPI in昀氀ation rate, calculated from the series CPIAUCNS

(Figure 1.7). Clearly, before 1970, the series was essentially annual (apart from a few big

spikes) and interpolated, in a not particularly clever way, to give a “monthly” series. The

Phillips curve predicts an inverse relationship between unemployment rate and in昀氀ation.

The raw correlation between contemporaneous values of the two monthly series over the
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Figure 1.8 US consumption growth since 1959.

period 1948–2020 is about 0.04. One question is whether this can be improved by time

series methods that adjust for seasonality and that bring in dynamics.

Figure 1.8 shows the monthly, seasonally adjusted, growth in personal consumption

expenditure in the USA, the series PCE. The series is dominated by the most recent

COVID-19 event. Hall (1978) argued that consumption should be a martingale, that is,

the growth rate of consumption should be unpredictable.

We next show the monthly average daily maximum temperature at the Oxford weather

station since 1850, from the dataset OXMT (Figure 1.9). This data shows an even more

pronounced seasonality, with higher temperatures in the summer and lower temperatures

in the winter. Of interest here is determining whether there is an upward trend in these

temperatures due to climate change, but this is very dif昀椀cult to see from the current plot,

because it is dominated by the seasonal effect.

We next show, in Figure 1.10, the monthly average daily maximum temperature series

for Toronto, Canada, since 1840, dataset Toronto. In this case we show the time series

separately by month (January, February, etc.), the so-called seasonal subseries plot. The

key thing about the graph is that every month is shown on the same vertical scale of

temperature from−40 to+40 so that it is hard to perceive any change in the level of each

series.

Figure 1.11 shows a higher-frequency temperature series, which is the temperature at

the Cambridge University weather station recorded every 30 minutes since 1995, dataset

Cam30. This data also has a pronounced seasonality, both within day (day is warmer than

night) and within year (summer is warmer than winter). There does not appear to be a

strong trend to this series over the time frame considered, although it is a little dif昀椀cult

to deal with the multiple seasonal patterns complicating things.

Next comes a weekly time series of Scottish mortality from the dataset Deadscots

(Figure 1.12). This is the raw mortality unadjusted for population, which was around

5.25 million in 1974, and fell to 5.07 million in 2000 and thereafter rose to 5.46 million
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Figure 1.9 Oxford monthly average daily maximum temperature.

in 2019. This series was converted to a regular 52-week year by dividing the 53rd week

between week 52 and week 1 of the following year. Modelling and forecasting mortality

is important for insurance companies and public health bodies, not to mention funeral

homes. There is a clear seasonality in this data since deaths are higher in the winter than

in the summer. Demographers typically work with disaggregated (by age and sex) series

and model these curves separately. For annual mortality, Denton et al. (2005) used an

AR(2) process for the growth rate of Canada data from 1926 to 2000, see Chapter 3.

The next series, Figure 1.13. is of historical interest. It is data collected by JohnArbuth-

not on the annual number of boy and girl live births in London from 1629 to 1710, the

dataset Arbuthnot. There appears to be 昀椀rst a downward trend between 1640 and 1660,

which was the period of Oliver Cromwell and the Puritans, and a further, smaller, dip

around 1665, caused by the Black Death, and then an upward trend in these raw numbers

due to the expansion of the population of this city during the latter half of the century.

The question Arbuthnot addressed was whether boys were more likely to be live-born

than girls. He reported that for all 82 years there were more boys born than girls. We nat-

urally think that the ratio should be 1, that is, boys and girls are equally likely, which we

can think of as the null hypothesis. What is the probability that when you toss a coin you

get heads 82 times in a row? This is (1/2)82, which is a very small number (25 zeros).

He concluded from this that boys are more likely to be born alive than girls. Can we say

more? We plot in Figure 1.14 the ratio of boys to girls for each year. The ratio does not

seem to have such a strong trend, but perhaps there are cycles in the ratio and short-term

trends.
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Figure 1.11 Cambridge half-hourly temperature.
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Figure 1.12 Weekly Scottish mortality, 1974–2019.

Finally, Figure 1.15 shows the daily number of new cases of COVID-19 reported in

the UK during the 昀椀rst half of 2020, extracted from the dataset Covid19. This series has

an unusual trend structure as it goes up, down, and up again; in both cases locally there

is a strong trend. There is clearly a time series structure to this data as the number of

new cases reported on a given day can be expected to depend on how many people were

infected at the time, which itself depends on the recent numbers of new cases.

Where does economics come in? Economic theory typically involves solving some

optimization problem de昀椀ned by preferences, choices, information, and beliefs. This

usually delivers some conditional moment restrictions that the data should satisfy. For

example, the ef昀椀cient markets theory says that stock returns should be unpredictable

based on past information relative to a risk premium. This a fortiori suggests that stock

returns should not have a seasonal component. But wait, if one is working with daily

closing stock price data, then there are typically no transactions over the weekend,
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