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1 Introduction

Until recently, nearly every computer program that youmight have interactedwith during an

ordinary day was coded up as a rigid set of rules specifying precisely how it should behave.

Say that we wanted to write an application to manage an e-commerce platform. After

huddling around a whiteboard for a few hours to ponder the problem, we might settle on

the broad strokes of a working solution, for example: (i) users interact with the application

through an interface running in a web browser or mobile application; (ii) our application

interacts with a commercial-grade database engine to keep track of each user’s state and

maintain records of historical transactions; and (iii) at the heart of our application, the

business logic (you might say, the brains) of our application spells out a set of rules that

map every conceivable circumstance to the corresponding action that our program should

take.

To build the brains of our application, we might enumerate all the common events that our

program should handle. For example, whenever a customer clicks to add an item to their

shopping cart, our program should add an entry to the shopping cart database table, associ-

ating that user’s ID with the requested product’s ID. We might then attempt to step through

every possible corner case, testing the appropriateness of our rules and making any neces-

sary modi昀椀cations. What happens if a user initiates a purchase with an empty cart? While

few developers ever get it completely right the 昀椀rst time (it might take some test runs to

work out the kinks), for the most part we can write such programs and con昀椀dently launch

them before ever seeing a real customer. Our ability to manually design automated sys-

tems that drive functioning products and systems, often in novel situations, is a remarkable

cognitive feat. And when you are able to devise solutions that work 100% of the time, you

typically should not be worrying about machine learning.

Fortunately for the growing community of machine learning scientists, many tasks that we

would like to automate do not bend so easily to human ingenuity. Imagine huddling around

the whiteboard with the smartest minds you know, but this time you are tackling one of the

following problems:

• Write a program that predicts tomorrow’sweather given geographic information, satellite

images, and a trailing window of past weather.

• Write a program that takes in a factoid question, expressed in free-form text, and answers

it correctly.

• Write a program that, given an image, identi昀椀es every person depicted in it and draws

outlines around each.
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2 Introduction

• Write a program that presents users with products that they are likely to enjoy but un-

likely, in the natural course of browsing, to encounter.

For these problems, even elite programmers would struggle to code up solutions from

scratch. The reasons can vary. Sometimes the program that we are looking for follows

a pattern that changes over time, so there is no 昀椀xed right answer! In such cases, any

successful solution must adapt gracefully to a changing world. At other times, the rela-

tionship (say between pixels, and abstract categories) may be too complicated, requiring

thousands or millions of computations and following unknown principles. In the case of

image recognition, the precise steps required to perform the task lie beyond our conscious

understanding, even though our subconscious cognitive processes execute the task e昀昀ort-

lessly.

Machine learning is the study of algorithms that can learn from experience. As a machine

learning algorithm accumulates more experience, typically in the form of observational

data or interactions with an environment, its performance improves. Contrast this with

our deterministic e-commerce platform, which follows the same business logic, no matter

how much experience accrues, until the developers themselves learn and decide that it is

time to update the software. In this book, we will teach you the fundamentals of machine

learning, focusing in particular on deep learning, a powerful set of techniques driving in-

novations in areas as diverse as computer vision, natural language processing, healthcare,

and genomics.

1.1 A Motivating Example

Before beginning writing, the authors of this book, like much of the work force, had to

become ca昀昀einated. We hopped in the car and started driving. Using an iPhone, Alex called

out “Hey Siri”, awakening the phone’s voice recognition system. Then Mu commanded

“directions to Blue Bottle co昀昀ee shop”. The phone quickly displayed the transcription of

his command. It also recognized that we were asking for directions and launched the Maps

application (app) to ful昀椀ll our request. Once launched, the Maps app identi昀椀ed a number

of routes. Next to each route, the phone displayed a predicted transit time. While this story

was fabricated for pedagogical convenience, it demonstrates that in the span of just a few

seconds, our everyday interactions with a smart phone can engage several machine learning

models.

Imagine just writing a program to respond to a wake word such as “Alexa”, “OK Google”,

and “Hey Siri”. Try coding it up in a room by yourself with nothing but a computer and

a code editor, as illustrated in Fig. 1.1.1. How would you write such a program from 昀椀rst

principles? Think about it… the problem is hard. Every second, the microphone will col-

lect roughly 44,000 samples. Each sample is a measurement of the amplitude of the sound

wave. What rule could map reliably from a snippet of raw audio to con昀椀dent predictions

{yes, no} about whether the snippet contains the wake word? If you are stuck, do not worry.
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3 A Motivating Example

We do not know how to write such a program from scratch either. That is why we use ma-

chine learning.

tFig. 1.1.1 Identify a wake word.

Here is the trick. Often, even when we do not know how to tell a computer explicitly how

to map from inputs to outputs, we are nonetheless capable of performing the cognitive feat

ourselves. In other words, even if you do not know how to program a computer to rec-

ognize the word “Alexa”, you yourself are able to recognize it. Armed with this ability,

we can collect a huge dataset containing examples of audio snippets and associated labels,

indicating which snippets contain the wake word. In the currently dominant approach to

machine learning, we do not attempt to design a system explicitly to recognize wake words.

Instead, we de昀椀ne a 昀氀exible program whose behavior is determined by a number of pa-

rameters. Then we use the dataset to determine the best possible parameter values, i.e.,

those that improve the performance of our program with respect to a chosen performance

measure.

You can think of the parameters as knobs that we can turn, manipulating the behavior of

the program. Once the parameters are 昀椀xed, we call the program a model. The set of all

distinct programs (input–output mappings) that we can produce just by manipulating the

parameters is called a family of models. And the “meta-program” that uses our dataset to

choose the parameters is called a learning algorithm.

Before we can go ahead and engage the learning algorithm, we have to de昀椀ne the problem

precisely, pinning down the exact nature of the inputs and outputs, and choosing an ap-

propriate model family. In this case, our model receives a snippet of audio as input, and

the model generates a selection among {yes, no} as output. If all goes according to plan

the model’s guesses will typically be correct as to whether the snippet contains the wake

word.

If we choose the right family of models, there should exist one setting of the knobs such

that the model 昀椀res “yes” every time it hears the word “Alexa”. Because the exact choice of

the wake word is arbitrary, we will probably need a model family su昀케ciently rich that, via

another setting of the knobs, it could 昀椀re “yes” only upon hearing the word “Apricot”. We

expect that the same model family should be suitable for “Alexa” recognition and “Apricot”

recognition because they seem, intuitively, to be similar tasks. However, we might need a

di昀昀erent family of models entirely if we want to deal with fundamentally di昀昀erent inputs

or outputs, say if we wanted to map from images to captions, or from English sentences to

Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is unlikely that our model

will recognize “Alexa”, “Apricot”, or any other English word. In machine learning, the

learning is the process by which we discover the right setting of the knobs for coercing the
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4 Introduction

desired behavior from our model. In other words, we train our model with data. As shown

in Fig. 1.1.2, the training process usually looks like the following:

1. Start o昀昀 with a randomly initialized model that cannot do anything useful.

2. Grab some of your data (e.g., audio snippets and corresponding {yes, no} labels).

3. Tweak the knobs to make the model perform better as assessed on those examples.

4. Repeat Steps 2 and 3 until the model is awesome.

tFig. 1.1.2 A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can

learn to recognize wake words, if presented with a large labeled dataset. You can think of

this act of determining a program’s behavior by presenting it with a dataset as programming

with data. That is to say, we can “program” a cat detector by providing ourmachine learning

system with many examples of cats and dogs. This way the detector will eventually learn

to emit a very large positive number if it is a cat, a very large negative number if it is a

dog, and something closer to zero if it is not sure. This barely scratches the surface of what

machine learning can do. Deep learning, which we will explain in greater detail later, is

just one among many popular methods for solving machine learning problems.

1.2 Key Components

In our wake word example, we described a dataset consisting of audio snippets and binary

labels, and we gave a hand-wavy sense of how we might train a model to approximate a

mapping from snippets to classi昀椀cations. This sort of problem, where we try to predict a

designated unknown label based on known inputs given a dataset consisting of examples

for which the labels are known, is called supervised learning. This is just one among many

kinds of machine learning problems. Before we explore other varieties, we would like to

shed more light on some core components that will follow us around, no matter what kind

of machine learning problem we tackle:

1. The data that we can learn from.

2. A model of how to transform the data.

3. An objective function that quanti昀椀es how well (or badly) the model is doing.
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5 Key Components

4. An algorithm to adjust the model’s parameters to optimize the objective function.

1.2.1 Data

It might go without saying that you cannot do data science without data. We could lose

hundreds of pages pondering what precisely data is, but for now, we will focus on the key

properties of the datasets that we will be concerned with. Generally, we are concerned with

a collection of examples. In order to work with data usefully, we typically need to come

up with a suitable numerical representation. Each example (or data point, data instance,

sample) typically consists of a set of attributes called features (sometimes called covariates

or inputs), based on which the model must make its predictions. In supervised learning

problems, our goal is to predict the value of a special attribute, called the label (or target),

that is not part of the model’s input.

If we were working with image data, each example might consist of an individual photo-

graph (the features) and a number indicating the category to which the photograph belongs

(the label). The photograph would be represented numerically as three grids of numerical

values representing the brightness of red, green, and blue light at each pixel location. For

example, a 200 × 200 pixel color photograph would consist of 200 × 200 × 3 = 120000

numerical values.

Alternatively, we might work with electronic health record data and tackle the task of pre-

dicting the likelihood that a given patient will survive the next 30 days. Here, our features

might consist of a collection of readily available attributes and frequently recorded mea-

surements, including age, vital signs, comorbidities, current medications, and recent pro-

cedures. The label available for training would be a binary value indicating whether each

patient in the historical data survived within the 30-day window.

In such cases, when every example is characterized by the same number of numerical fea-

tures, we say that the inputs are 昀椀xed-length vectors and we call the (constant) length of

the vectors the dimensionality of the data. As you might imagine, 昀椀xed-length inputs can

be convenient, giving us one less complication to worry about. However, not all data can

easily be represented as 昀椀xed-length vectors. While we might expect microscope images to

come from standard equipment, we cannot expect imagesmined from the Internet all to have

the same resolution or shape. For images, we might consider cropping them to a standard

size, but that strategy only gets us so far. We risk losing information in the cropped-out

portions. Moreover, text data resists 昀椀xed-length representations even more stubbornly.

Consider the customer reviews left on e-commerce sites such as Amazon, IMDb, and Tri-

pAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of

deep learning over traditional methods is the comparative grace with which modern models

can handle varying-length data.

Generally, the more data we have, the easier our job becomes. When we have more data, we

can train more powerful models and rely less heavily on preconceived assumptions. The

regime change from (comparatively) small to big data is a major contributor to the success

of modern deep learning. To drive the point home, many of the most exciting models in
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6 Introduction

deep learning do not work without large datasets. Some others might work in the small

data regime, but are no better than traditional approaches.

Finally, it is not enough to have lots of data and to process it cleverly. We need the right

data. If the data is full of mistakes, or if the chosen features are not predictive of the target

quantity of interest, learning is going to fail. The situation is captured well by the cliché:

garbage in, garbage out. Moreover, poor predictive performance is not the only poten-

tial consequence. In sensitive applications of machine learning, like predictive policing,

resume screening, and risk models used for lending, we must be especially alert to the con-

sequences of garbage data. One commonly occurring failure mode concerns datasets where

some groups of people are unrepresented in the training data. Imagine applying a skin can-

cer recognition system that had never seen black skin before. Failure can also occur when

the data does not only under-represent some groups but re昀氀ects societal prejudices. For ex-

ample, if past hiring decisions are used to train a predictive model that will be used to screen

resumes then machine learning models could inadvertently capture and automate historical

injustices. Note that this can all happen without the data scientist actively conspiring, or

even being aware.

1.2.2 Models

Most machine learning involves transforming the data in some sense. We might want to

build a system that ingests photos and predicts smiley-ness. Alternatively, we might want to

ingest a set of sensor readings and predict how normal vs. anomalous the readings are. By

model, we denote the computational machinery for ingesting data of one type, and spitting

out predictions of a possibly di昀昀erent type. In particular, we are interested in statistical

models that can be estimated from data. While simple models are perfectly capable of ad-

dressing appropriately simple problems, the problems that we focus on in this book stretch

the limits of classical methods. Deep learning is di昀昀erentiated from classical approaches

principally by the set of powerful models that it focuses on. These models consist of many

successive transformations of the data that are chained together top to bottom, thus the

name deep learning. On our way to discussing deep models, we will also discuss some

more traditional methods.

1.2.3 Objective Functions

Earlier, we introduced machine learning as learning from experience. By learning here, we

mean improving at some task over time. Butwho is to saywhat constitutes an improvement?

You might imagine that we could propose updating our model, and some people might

disagree on whether our proposal constituted an improvement or not.

In order to develop a formal mathematical system of learning machines, we need to have

formal measures of how good (or bad) our models are. In machine learning, and optimiza-

tion more generally, we call these objective functions. By convention, we usually de昀椀ne

objective functions so that lower is better. This is merely a convention. You can take any

function for which higher is better, and turn it into a new function that is qualitatively iden-

tical but for which lower is better by 昀氀ipping the sign. Because we choose lower to be

better, these functions are sometimes called loss functions.
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7 Kinds of Machine Learning Problems

When trying to predict numerical values, the most common loss function is squared error,

i.e., the square of the di昀昀erence between the prediction and the ground truth target. For

classi昀椀cation, the most common objective is to minimize error rate, i.e., the fraction of

examples on which our predictions disagree with the ground truth. Some objectives (e.g.,

squared error) are easy to optimize, while others (e.g., error rate) are di昀케cult to optimize

directly, owing to non-di昀昀erentiability or other complications. In these cases, it is common

instead to optimize a surrogate objective.

During optimization, we think of the loss as a function of the model’s parameters, and treat

the training dataset as a constant. We learn the best values of our model’s parameters by

minimizing the loss incurred on a set consisting of some number of examples collected for

training. However, doing well on the training data does not guarantee that we will do well

on unseen data. So we will typically want to split the available data into two partitions:

the training dataset (or training set), for learning model parameters; and the test dataset

(or test set), which is held out for evaluation. At the end of the day, we typically report

how our models perform on both partitions. You could think of training performance as

analogous to the scores that a student achieves on the practice exams used to prepare for

some real 昀椀nal exam. Even if the results are encouraging, that does not guarantee success

on the 昀椀nal exam. Over the course of studying, the student might begin to memorize the

practice questions, appearing to master the topic but faltering when faced with previously

unseen questions on the actual 昀椀nal exam. When a model performs well on the training set

but fails to generalize to unseen data, we say that it is over昀椀tting to the training data.

1.2.4 Optimization Algorithms

Once we have got some data source and representation, a model, and a well-de昀椀ned objec-

tive function, we need an algorithm capable of searching for the best possible parameters

for minimizing the loss function. Popular optimization algorithms for deep learning are

based on an approach called gradient descent. In brief, at each step, this method checks

to see, for each parameter, how that training set loss would change if you perturbed that

parameter by just a small amount. It would then update the parameter in the direction that

lowers the loss.

1.3 Kinds of Machine Learning Problems

The wake word problem in our motivating example is just one among many that machine

learning can tackle. To motivate the reader further and provide us with some common

language that will follow us throughout the book, we now provide a broad overview of the

landscape of machine learning problems.
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8 Introduction

1.3.1 Supervised Learning

Supervised learning describes tasks where we are given a dataset containing both features

and labels and asked to produce a model that predicts the labels when given input features.

Each feature–label pair is called an example. Sometimes, when the context is clear, we

may use the term examples to refer to a collection of inputs, even when the corresponding

labels are unknown. The supervision comes into play because, for choosing the parame-

ters, we (the supervisors) provide the model with a dataset consisting of labeled examples.

In probabilistic terms, we typically are interested in estimating the conditional probability

of a label given input features. While it is just one among several paradigms, supervised

learning accounts for the majority of successful applications of machine learning in indus-

try. Partly that is because many important tasks can be described crisply as estimating the

probability of something unknown given a particular set of available data:

• Predict cancer vs. not cancer, given a computer tomography image.

• Predict the correct translation in French, given a sentence in English.

• Predict the price of a stock next month based on this month’s 昀椀nancial reporting data.

While all supervised learning problems are captured by the simple description “predicting

the labels given input features”, supervised learning itself can take diverse forms and require

tons of modeling decisions, depending on (among other considerations) the type, size, and

quantity of the inputs and outputs. For example, we use di昀昀erent models for processing

sequences of arbitrary lengths and 昀椀xed-length vector representations. We will visit many

of these problems in depth throughout this book.

Informally, the learning process looks something like the following. First, grab a big col-

lection of examples for which the features are known and select from them a random subset,

acquiring the ground truth labels for each. Sometimes these labels might be available data

that have already been collected (e.g., did a patient die within the following year?) and

other times we might need to employ human annotators to label the data, (e.g., assigning

images to categories). Together, these inputs and corresponding labels comprise the train-

ing set. We feed the training dataset into a supervised learning algorithm, a function that

takes as input a dataset and outputs another function: the learned model. Finally, we can

feed previously unseen inputs to the learned model, using its outputs as predictions of the

corresponding label. The full process is drawn in Fig. 1.3.1.

tFig. 1.3.1 Supervised learning.
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9 Kinds of Machine Learning Problems

¹⁹

Regression

Perhaps the simplest supervised learning task to wrap your head around is regression. Con-

sider, for example, a set of data harvested from a database of home sales. We might con-

struct a table, in which each row corresponds to a di昀昀erent house, and each column cor-

responds to some relevant attribute, such as the square footage of a house, the number of

bedrooms, the number of bathrooms, and the number of minutes (walking) to the center

of town. In this dataset, each example would be a speci昀椀c house, and the corresponding

feature vector would be one row in the table. If you live in New York or San Francisco, and

you are not the CEO of Amazon, Google, Microsoft, or Facebook, the (sq. footage, no. of

bedrooms, no. of bathrooms, walking distance) feature vector for your home might look

something like: [600, 1, 1, 60]. However, if you live in Pittsburgh, it might look more like

[3000, 4, 3, 10]. Fixed-length feature vectors like this are essential for most classic machine

learning algorithms.

What makes a problem a regression is actually the form of the target. Say that you are in the

market for a new home. You might want to estimate the fair market value of a house, given

some features such as above. The data here might consist of historical home listings and the

labels might be the observed sales prices. When labels take on arbitrary numerical values

(even within some interval), we call this a regression problem. The goal is to produce a

model whose predictions closely approximate the actual label values.

Lots of practical problems are easily described as regression problems. Predicting the rating

that a user will assign to a movie can be thought of as a regression problem and if you

designed a great algorithm to accomplish this feat in 2009, you might have won the 1-

million-dollar Net昀氀ix prize 19 . Predicting the length of stay for patients in the hospital is

also a regression problem. A good rule of thumb is that any how much? or how many?

problem is likely to be regression. For example:

• How many hours will this surgery take?

• How much rainfall will this town have in the next six hours?

Even if you have never worked with machine learning before, you have probably worked

through a regression problem informally. Imagine, for example, that you had your drains re-

paired and that your contractor spent 3 hours removing gunk from your sewage pipes. Then

they sent you a bill of 350 dollars. Now imagine that your friend hired the same contractor

for 2 hours and received a bill of 250 dollars. If someone then asked you how much to

expect on their upcoming gunk-removal invoice you might make some reasonable assump-

tions, such as more hours worked costs more dollars. You might also assume that there is

some base charge and that the contractor then charges per hour. If these assumptions held

true, then given these two data examples, you could already identify the contractor’s pricing

structure: 100 dollars per hour plus 50 dollars to show up at your house. If you followed

that much, then you already understand the high-level idea behind linear regression.

In this case, we could produce the parameters that exactly matched the contractor’s prices.

Sometimes this is not possible, e.g., if some of the variation arises from factors beyond

your two features. In these cases, we will try to learn models that minimize the distance
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10 Introduction

between our predictions and the observed values. In most of our chapters, we will focus on

minimizing the squared error loss function. As we will see later, this loss corresponds to

the assumption that our data were corrupted by Gaussian noise.

Classi昀椀cation

While regressionmodels are great for addressing howmany? questions, lots of problems do

not 昀椀t comfortably in this template. Consider, for example, a bank that wants to develop a

check scanning feature for its mobile app. Ideally, the customer would simply snap a photo

of a check and the app would automatically recognize the text from the image. Assuming

that we had some ability to segment out image patches corresponding to each handwritten

character, then the primary remaining task would be to determine which character among

some known set is depicted in each image patch. These kinds of which one? problems

are called classi昀椀cation and require a di昀昀erent set of tools from those used for regression,

although many techniques will carry over.

In classi昀椀cation, we want our model to look at features, e.g., the pixel values in an image,

and then predict to which category (sometimes called a class) among some discrete set

of options, an example belongs. For handwritten digits, we might have ten classes, corre-

sponding to the digits 0 through 9. The simplest form of classi昀椀cation is when there are

only two classes, a problem which we call binary classi昀椀cation. For example, our dataset

could consist of images of animals and our labels might be the classes {cat, dog}. Whereas

in regression we sought a regressor to output a numerical value, in classi昀椀cation we seek a

classi昀椀er, whose output is the predicted class assignment.

For reasons that we will get into as the book gets more technical, it can be di昀케cult to opti-

mize a model that can only output a 昀椀rm categorical assignment, e.g., either “cat” or “dog”.

In these cases, it is usually much easier to express our model in the language of probabili-

ties. Given features of an example, our model assigns a probability to each possible class.

Returning to our animal classi昀椀cation example where the classes are {cat, dog}, a classi-

昀椀er might see an image and output the probability that the image is a cat as 0.9. We can

interpret this number by saying that the classi昀椀er is 90% sure that the image depicts a cat.

The magnitude of the probability for the predicted class conveys a notion of uncertainty.

It is not the only one available and we will discuss others in chapters dealing with more

advanced topics.

Whenwe havemore than two possible classes, we call the problemmulticlass classi昀椀cation.

Common examples include handwritten character recognition {0, 1, 2, …9, a, b, c, …}.

While we attacked regression problems by trying to minimize the squared error loss func-

tion, the common loss function for classi昀椀cation problems is called cross-entropy, whose

name will be demysti昀椀ed when we introduce information theory in later chapters.

Note that the most likely class is not necessarily the one that you are going to use for your

decision. Assume that you 昀椀nd a beautiful mushroom in your backyard as shown in Fig.

1.3.2.

Now, assume that you built a classi昀椀er and trained it to predict whether a mushroom is poi-
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