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EQUIVALENTS OF THE RIEMANN HYPOTHESIS
Volume Three: Further Steps towards Resolving the Riemann Hypothesis

The Riemann hypothesis (RH) may be the most important outstanding problem in
mathematics. This third volume on equivalents to RH offers a full presentation of
recent results of Nicolas, Rogers3Tao3Dobner, Polymath15, Bagchi, and
Matiyasevich. Of particular interest here are derivations which show, assuming all
zeros on the critical line are simple, that RH is decidable. Also included is the
classical Pólya3Jensen equivalence and related developments of Ono et al.

An extensive set of appendices highlights key background results, most of which
are proved. The book is highly accessible, with definitions repeated, proofs split
logically, and graphical visuals. It is ideal for mathematicians wishing to update
their knowledge, logicians, and graduate students seeking accessible research
problems in number theory.

Each of the three volumes can be read mostly independently. Volume 1 presents
classical and modern arithmetic equivalents to RH. Volume 2 covers equivalences
with a strong analytic orientation. Volume 3 includes further arithmetic and analytic
equivalents plus new material on the decidability of RH.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises
at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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RH is a precise statement, and in one sense what it means is clear, but what

it is connected with, what it implies, where it comes from, can be very

unobvious.

Martin Huxley

www.cambridge.org/9781009384803
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-38480-3 — Equivalents of the Riemann Hypothesis
Kevin Broughan
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface page xiii

1 Nicolas’ Ã(x) < li(¹(x)) Equivalence 1

1.1 Introduction 1

1.2 Estimating the Logarithmic Integral 4

1.3 The Function A1(x) 11

1.4 The Functions B(x) and A2(x) 16

1.5 Asymptotic and Explicit Bounds for the Function A(x) 22

1.6 A Big Omega Theorem of Robin 28

1.7 End Note 34

2 Nicolas’ Number of Divisors Function Equivalence 35

2.1 Introduction 35

2.2 Results Derived from Chapter 1 39

2.3 Superior Highly Composite Numbers 41

2.4 Preliminary Lemmas 49

2.5 Technical Lemmas 59

2.6 Proof of Nicolas’ Explicit Inequality Assuming RH 72

2.7 Benefit and Convexity 74

2.8 The Main Theorem 76

2.9 End Note 87

3 An Aspect of the Zeta Function Zero Gap Estimates 88

3.1 Introduction 88

3.2 Preliminary Results 90

3.3 Gonek’s Sum of Powers to Zeta Zeros 95

3.4 Main Theorem 101

4 The Rogers–Tao Equivalence 109

4.1 Introduction 109

4.2 Definitions and Overview 110

4.3 Preliminary Results 113

4.4 Counting the Zeros of Ht(z) 133

vii

www.cambridge.org/9781009384803
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-38480-3 — Equivalents of the Riemann Hypothesis
Kevin Broughan
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

4.5 A Lower Bound on Gaps Between Zeros 139

4.6 Asymptotics for the Integral of the Energy 143

4.7 Evolution of the Adjusted Hamiltonian 156

4.8 Estimates for the Hamiltonian and Energy 164

4.9 The Fundamental Lemma and Main Theorem 172

5 The Dirichlet Series of Dobner 175

5.1 Introduction 175

5.2 Preliminary Lemmas 178

5.3 Fundamental Lemma and Theorem 186

5.4 Main Result 196

5.5 Dobner’s Theorem for an Extended Selberg Class 198

5.6 End Note 207

6 An Upper Bound for the de Bruijn–Newman Constant 208

6.1 Introduction 208

6.2 Imported Results 212

6.3 Definitions 215

6.4 Notation 218

6.5 Zero Dynamics 219

6.6 Basic Estimates 222

6.7 Fundamental Lemma and Theorem 225

6.8 Essential Estimates 240

6.9 The Unbounded Region 260

6.10 The Barrier Region 264

6.11 The Bounded Region 271

6.12 Criteria for an Upper Bound 279

6.13 The Main Theorem 284

6.14 End Note 288
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Preface

Recent developments have provided strong motivation for writing a third and

last volume in this series of works. It includes some recent equivalents to the

Riemann hypothesis (RH) published in the main during the second decade

of this century. Two are arithmetical, one quite analytic, and one very com-

putational. Given the Riemann zeta function is defined using at least Peano

arithmetic, and that form of arithmetic is undecidable, there must be a range

of undecidabilities waiting to be found within its family of properties. To this

end I have concluded the volume with what I hope is a sufficient set of exam-

ples and structures of mathematical logic to stimulate research. After more

than 160 years of trying without success, this approach could offer some in-

sights at least into why resolving the Riemann hypothesis is such a difficult

problem. Even though, as revealed in the penultimate chapter, there are a wide

range of undecidable problems in mathematics, the evidence presented in the

final chapter is that, as expected, RH is in some sense decidable.

In Volume One there are equivalences for the arithmetical functions

È(x), ¹(x), Ã(n), Ã(x) and Ç(n), but none for the number of divisors function

d(n). This omission has now been rectified through the work of Jean-Louis

Nicolas. His result on the function d(n) is dependent on another of his equiva-

lences, the inequality Ã(x) < li(¹(x)). An account of these two closely related

equivalences is derived in Chapters 1 and 2. The main chapter and appendix

dependencies for Nicolas’ results are given in Figure 2.

In Chapter 5 of Volume Two there is an account of work on the de Bruijn–

Newman constant Λ, where RH is equivalent to Λ ≤ 0. Csordas et al. had

shown there is an explicitly computable ÷ > 0 such that −÷ < Λ, with consid-

erable effort being spent over an extended period of time to reduce the size

of ÷. It came as a nice surprise in 2018 when Brad Rogers and Terence Tao,

using methods based on those of Csordas et al., proved that Λ ≥ 0. Thus, RH

is equivalent to Λ = 0. Their proof contains many new ideas and is set out in

Chapter 4.

xiii
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xiv Preface

The proof, for its ultimate step, requires an upper estimate, in terms of the

height, for a positive proportion of the zeta zero height gaps due to Brian

Conrey, Amit Gosh, Steve Gonek, Roger Heath-Brown and others. This is

derived in Chapter 3. The main dependencies for the result of Rogers and Tao

are given in Figure 1.

Soon after the Rogers/Tao work was published on the archive, a much

shorter method for obtaining the same result Λ ≥ 0 was found by Alexan-

der Dobner. His method applies not only to the Riemann zeta function but

also to the extended Selberg class of L-functions. That this extension is valu-

able can be seen in the final sections of Chapter 8. “Dobner’s contour”, Figure

5.3, lies at the heart of his method. This is described for ζ(s) and outlined for

the extended Selberg class in Chapter 5. The Selberg class is described in Ap-

pendix I, with the main difference between the class and extended class beingfference

the absence in the latter of an Euler product requirement. Siegel’s nice proof

of Hamburger’s theorem, which shows the product is not really needed to

characterize the Riemann zeta function is given in Appendix G. It underpins

the importance of the extended class.

Ap A

Ch 9 Ch 3 Ap E

Ch 4

Ap F Ap D

Figure 1 Dependencies for Chapter 4.

Chapter 7: buried somewhat in two papers from 1913 written in German,

one by Jensen and the other by Pólya, is an equivalence of these two authorsólya,

that might very well have been included in Volume Two. This equivalence
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Preface xv

uses the Laguerre–Pólya class of [30, chapter 5], and will be derived in Chap-

ter 7. It relates to the zeros of polynomials with real coefficients formed by

truncating a Taylor expansion of the Riemann Ξ(s) function being all real.

This was shown to be true in 2011 by Chasse for all Jensen polynomial de-

grees up to 2×1017, and his proof is included in Chapter 7. It relies on Platt’s

value for critical zeta zero heights, and properties of polynomials given by

Obrechkoff, Schur, Walsh, Borcea, Brändén and others. These properties are

set out in Appendix C.

Following the success of Rogers and Tao in obtaining the equivalence Λ ≥

0, a Polymath group, Polymath15, was established by Terence Tao with the

goal of improving the known upper bound Λ < 0.5. The results of this work

are given in Chapter 6. In a very short period of time, experimenting with

more than half a dozen computer languages to obtain acceptable efficiency,

the group arrived at an upper bound Λ ≤ 0.22. Their work was based on the

earlier work on Λ, especially that of de Bruijn set out in [30, section 5.3].

Note that in the notation of Volume Two [30, table 5.2], Polymath15 uses ΛC

for Λ.

Not having the high-powered computational expertise of some of the mem-

bers of the Polymath group, this author struggled to reproduce their results,

but managed to do so using the language Julia. This is in contrast to Polymath

who used Pari and C for their final calculations. The Polymath work, as does

that of Chasse on Jensen polynomials in Section 7.5, depends on a currently

well regarded height due to David Platt, up to which all zeta zeros in the crit-

ical strip lie on the critical line. It may well be that further improvements in

the Λ upper bound will depend on increases in this height.

However, it just might be possible to use the analytic part of Polymath15’s

techniques, as they stand, to show that one could shrink the critical strip by

some explicit ÷ > 0, or even to demonstrate that such an ÷ must exist. That

would be great progress!

The language Julia has many excellent modern features, and could in the

future reach a level comparable to LaTeX in terms of value and robustness. It

is open source, fast, has a just-in-time compilation step, can employ a wide

range of symbols, and has many attached packages. Currently it tends to

change rather often – it is quite a new system, so has not been included in

the form of a package for Volume Three.

Chapter 8: in addition RH is equivalent to the stronger statement that some

associated polynomials, namely all so-called Jensen polynomials related to

the Riemann Ξ(s) function, have all real roots for all non-negative shifts of the

coefficients. Again it came as a delightful surprise to learn, in 2018 when the

second author was in NZ, of the new result of Griffen, Ono, Rolen and Zagier

that each Jensen polynomial has all real roots for all shifts sufficiently large
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Ap B

Ch 1

Ch 2

Ap J

Ch 6

Ap C

Ch 7

Ch 8

Ap K

Ap G

Ap I

Ch 5

Ap H

Figure 2 Dependencies for Chapters 2, 5, 6 and 8.

depending on the degree n ≥ N(d), with N(d) explicit but not optimal. This

was shown in a second paper by a related group of authors. The result depends

on estimates and properties of Hermite polynomials, which are derived in the

chapter.

However, a survey paper by David Farmer, outlined in Section 8.8, gives a

critique of the Griffen et al. work, sets it in a broad context of earlier work,ffen

makes a case that their results are more analysis than number theory, and

shows why their approach won’t be particularly efficient when it comes to

checking zeros. Indeed, he gives a heuristic which tends to show that Jensen

polynomials are significantly less efficient in finding zeros off the critical line

than Taylor polynomials. We neither affirm or attempt to negate this critique,

but believe it provides valuable insights into not only the Griffen et al. work,ffen

but also new work relating to the de Bruijn–Newman constant reported in

Chapter 6, especially the work of Dobner. In this regard the example of Con-

rey and Gosh based on the extended Lindelof hypothesis and the extendedöf
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Preface xvii

Selberg class is set out at the end of the chapter. It illustrates the usefulness

of going beyond zeta.

Given the difficulties experienced by many mathematicians in attempting

to resolve RH over the past 160 years, the question naturally arises whether

it might be “undecidable”. Readers will be familiar with some undecidable

questions or theories, but it seemed helpful to include a chapter showing the

broad scope of these examples. This is Chapter 10, which has been built start-

ing with a list of Bjorn Poonen, but includes the Martin Davis proof of the

“unsolvability” of Hilbert’s 10th problem, undecidabilities which can be de-

rived from this result, and other proofs, to form a basis of ideas on what sort

of mathematical questions might be undecidable.

Some of the applications of the negative solution to Hilbert’s 10th prob-

lem use topological density methods. As far as the Riemann zeta function is

concerned, these are analogous to the universality theorems of Voronin. Here

I include an exposition of a very general form of universality for ·(s) based

on the thesis of Steve Gonek, and independently Bhaskar Bagchi. This is in

the setting of joint universality for finite families of Dirichlet L-functions,

and is given in Chapter 9. That chapter also includes an application to a very

nice equivalence of Bagchi which is based on a dynamical systems concept,

strong recurrence, although the reader does not require a background in that

subject. Bagchi’s valuable positive upper density result for translates in zeta’s

universal property is also given.

Included in this volume are expository information and tools of mathemat-

ical logic, set out in four appendices. These are provided to assist readers in

exploring the “is RH undecidable or decidable?” issue. Consulting a sample

of many of the existing texts on introductory mathematical logic, covering the

classical results in the field from mostly the twentieth century, it was hard to

pick and choose definitions and results from the sample, since not all authors

agreed. For example fundamental to this quest is the definition of “recursive

function” so this at least needed to be solid and effective. I chose the texts

I found most satisfactory, and included a summary, with some proofs and

examples, of some parts of Richard Hodel’s book An Introduction to mathe-

matical logic [112], as part of the appendices L on the propositional calculus

and M on the predicate calculus. For the appendix on recursive functions N,

the material has been based in part on Nigel Cutland’s text Computability

[66]. The final appendix O gives the reader a taste of proof theory and the

opportunity to consider the goal of analyzing and comparing proofs of RH

equivalences using some of the tools developed during the twentieth century.

The main chapter in the part of the book which deals with equivalences

based on concepts from mathematical logic is Chapter 11. The dependencies

are given in Figure 3.
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We begin in Section 11.2 with the so-called arithmetic hierarchy. This is

defined later in Appendix M.12. A variety of RH equivalent statements, which

take the form of first-order predicate calculus statements at the base of the

hierarchy, are summarized.

Two equivalences of Matiyasevich follow in Sections 11.3 and 11.4. The

first shows how a single polynomial in many variables and integer coefficients

may be derived, using the equivalence of Shapiro [29, section 10.1], such that

RH is equivalent to the polynomial having no integer solution. The second

is an RH equivalence which takes the form of an inequality involving arith-

metic functions which have only integer values. Then RH is equivalent to the

inequality holding for all n ∈ N. A related computer algorithm halts if and

only if RH is false, showing RH is at least semi-decidable.

Next, we embark on a description of some ideas which have been very

influential in the derivation of arithmetic/combinatorial statements which are

true but cannot be proved in PA, a restricted form of the Peano axioms for

arithmetic. This includes the graph theory of König, the examples of Paris

and Harrington, and the applications to ·(s) of Bovykin and Weiermann set

out in part in Sections 11.5, 11.6, 11.8 and 11.9. We include the proof of

the Dirichlet–Kronecker density theorem which plays an essential role. The

theorem of Paris and Harrington is based on a simple combinatorial statement

which is true but cannot be proven in PA. This is used in the theorem of

Bovykin and Weiermann to show that for a given Ã > 1 the statement that

there are particular n-tuples of integers with products a, b such that the zeta

values ·(Ã + ia) and ·(Ã + ib) are close in a particular manner, is true but

cannot be proved in PA. There is also a form of the statement for 1
2
< Ã ≤ 1.

This shows there are explicit undecidabilities in ·(s).

In the final section of Chapter 11 we set out a number of possibly plausible

approaches to RH using techniques from mathematical logic. This is set out

by way of eight examples, which are really exercises for the reader to refute

or elaborate to improve the level of rigour:

(1) An undecidable set of zeta-like functions which includes ·(s) defined

using Euler products and partial recursive functions, assuming RH is false.

(2) Again assuming RH is false, an undecidable set of partial recursive

functions giving the multiplicities of zeta zeros.

(3) A demonstration which shows that if RH is true the zeros without mul-

tiplicity are recursively enumerable, as are the zeros with multiplicity.

(4) An analytic model of an arbitrary Collatz function, and thus any Minsky

or Turing machine, using one of zeta’s universal properties.

(5) Similarly, a model for Conway’s rational or vector games using ·(s).

(6) Potential use of the method of Richardson/Caviness/Wang to find un-

decidabilities in zeta. Application of the method of Bovykin and Weiermann.

(7) Again assuming RH is true and that all zeros are simple, we can decide
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Figure 3 Some dependencies for Chapter 11.

whether γ is not the imaginary part of a zeta zero using the holomorphic flow

of ξ(s).

(8) Using Theorem N.10, which states a set A ⊂ N0 is decidable if and only

if it is the image of a partial recursive function, which is defined everywhere

and strictly increasing, we show that if we assume all zeros on the critical line

are simple, then RH is decidable.
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which I drew on for material in several appendices. Finally I must acknowl-
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multiple challenges, even as we both moved into elderhood.

www.cambridge.org/9781009384803
www.cambridge.org

