EQUIVALENTS OF THE RIEMANN HYPOTHESIS Volume Three: Further Steps towards Resolving the Riemann Hypothesis

The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH offers a full presentation of recent results of Nicolas, Rogers–Tao–Dobner, Polymath15, Bagchi, and Matiyasevich. Of particular interest here are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included is the classical Pólya–Jensen equivalence and related developments of Ono et al.

An extensive set of appendices highlights key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible research problems in number theory.

Each of the three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic equivalents to RH. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on the decidability of RH.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit

www.cambridge.org/mathematics.

- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn–Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav–Palmer and Gelfand–Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)
- 156 L. W. Beineke and R. J. Wilson (eds.) with B. Toft Topics in Chromatic Graph Theory
- 157 T. Mora Solving Polynomial Equation Systems III: Algebraic Solving
- 158 T. Mora Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
- 159 V. Berthé and M. Rigo (eds.) Combinatorics, Words and Symbolic Dynamics
- 160 B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis
- 161 M. Ghergu and S. D. Taliaferro Isolated Singularities in Partial Differential Inequalities
- 162 G. Molica Bisci, V. D. Radulescu and R. Servadei Variational Methods for Nonlocal Fractional Problems
- 163 S. Wagon The Banach-Tarski Paradox (Second Edition)
- 164 K. Broughan Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents
- 165 K. Broughan Equivalents of the Riemann Hypothesis II: Analytic Equivalents
- 166 M. Baake and U. Grimm (eds.) Aperiodic Order II: Crystallography and Almost Periodicity
- 167 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras II: Representation Theory and the Zel'manov Approach
- 168 A. Yu. Khrennikov, S. V. Kozyrev and W. A. Z'uñiga-Galindo Ultrametric Pseudodifferential Equations and Applications
- 169 S. R. Finch Mathematical Constants II
- 170 J. Krajíček Proof Complexity
- 171 D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen Quasi-Hopf Algebras
- 172 P. McMullen Geometric Regular Polytopes
- 173 M. Aguiar and S. Mahajan Bimonoids for Hyperplane Arrangements
- 174 M. Barski and J. Zabczyk Mathematics of the Bond Market: A Lévy Processes Approach
- 175 T. R. Bielecki, J. Jakubowski and M. Niewęgłowski Structured Dependence between Stochastic Processes
- 176 A. A. Borovkov, V. V. Ulyanov and Mikhail Zhitlukhin Asymptotic Analysis of Random Walks: Light-Tailed Distributions
- 177 Y.-K. Chan Foundations of Constructive Probability Theory
- 178 L. W. Beineke, M. C. Golumbic and R. J. Wilson (eds.) Topics in Algorithmic Graph Theory
- 179 H.-L. Gau and P. Y. Wu Numerical Ranges of Hilbert Space Operators
- 180 P. A. Martin Time-Domain Scattering
- 181 M. D. de la Iglesia Orthogonal Polynomials in the Spectral Analysis of Markov Processes
- 182 A. E. Brouwer and H. Van Maldeghem Strongly Regular Graphs
- 183 D. Z. Arov and O. J. Staffans Linear State/Signal Systems
- 184 A. A. Borovkov Compound Renewal Processes
- 185 D. Bridges, H. Ishihara, M. Rathjen and H. Schwichtenberg (eds.) Handbook of Constructive Mathematics
- 186 M. Aguiar and S. Mahajan Coxeter Bialgebras

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Equivalents of the Riemann Hypothesis

Volume Three: Further Steps towards Resolving the Riemann Hypothesis

> KEVIN BROUGHAN University of Waikato, New Zealand

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009384803 DOI: 10.1017/9781009384780

© Kevin Broughan 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-38480-3 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to Jackie, Jude and Beck

RH is a precise statement, and in one sense what it means is clear, but what it is connected with, what it implies, where it comes from, can be very unobvious.

Martin Huxley

Contents

	Pref	ace	page xiii
1	Nico	blas' $\pi(\mathbf{x}) < \operatorname{li}(\theta(\mathbf{x}))$ Equivalence	1
	1.1	Introduction	1
	1.2	Estimating the Logarithmic Integral	4
	1.3	The Function $A_1(x)$	11
	1.4	The Functions $B(x)$ and $A_2(x)$	16
	1.5	Asymptotic and Explicit Bounds for the Function $A(x)$	22
	1.6	A Big Omega Theorem of Robin	28
	1.7	End Note	34
2	Nico	las' Number of Divisors Function Equivalence	35
	2.1	Introduction	35
	2.2	Results Derived from Chapter 1	39
	2.3	Superior Highly Composite Numbers	41
	2.4	Preliminary Lemmas	49
	2.5	Technical Lemmas	59
	2.6	Proof of Nicolas' Explicit Inequality Assuming RH	72
	2.7	Benefit and Convexity	74
	2.8	The Main Theorem	76
	2.9	End Note	87
3	An A	Aspect of the Zeta Function Zero Gap Estimates	88
	3.1	Introduction	88
	3.2	Preliminary Results	90
	3.3	Gonek's Sum of Powers to Zeta Zeros	95
	3.4	Main Theorem	101
4	The Rogers–Tao Equivalence		109
	4.1	Introduction	109
	4.2	Definitions and Overview	110
	4.3	Preliminary Results	113
	4.4	Counting the Zeros of $H_t(z)$	133

viii		Contents	
	4.5	A Lower Bound on Gaps Between Zeros	139
	4.6	Asymptotics for the Integral of the Energy	143
	4.7	Evolution of the Adjusted Hamiltonian	156
	4.8	Estimates for the Hamiltonian and Energy	164
	4.9	The Fundamental Lemma and Main Theorem	172
5	The l	Dirichlet Series of Dobner	175
	5.1	Introduction	175
	5.2	Preliminary Lemmas	178
	5.3	Fundamental Lemma and Theorem	186
	5.4	Main Result	196
	5.5	Dobner's Theorem for an Extended Selberg Class	198
	5.6	End Note	207
6	An U	pper Bound for the de Bruijn–Newman Constant	208
	6.1	Introduction	208
	6.2	Imported Results	212
	6.3	Definitions	215
	6.4	Notation	218
	6.5	Zero Dynamics	219
	6.6	Basic Estimates	222
	6.7	Fundamental Lemma and Theorem	225
	6.8	Essential Estimates	240
	6.9	The Unbounded Region	260
	6.10	The Barrier Region	264
	0.11	Criterie for an Unner Dound	2/1
	0.12 6.12	The Mein Theorem	279
	6.14	End Note	204
-	0.14		200
1	1 ne 1	Polya–Jensen Equivalence	289
	7.1	Introduction	289
	7.2	The Pólya Jensen Equivalence for PH	290
	7.5	The Work of Coordas et al	293
	7.5	The Result of Chasse	298
Q	Ono	at al and Ionson Polynomials	207
0	8 1	Introduction	307
	8.1	Hermite Polynomials	310
	8.3	The Linear Growth Condition	313
	84	Asymptotics for the $\mathcal{E}(s)$ MacLaurin Coefficients	316
	8.5	The Linear Growth Condition for the Coefficients	320
	8.6	The Second Article of Ono et al.	323
	8.7	The Results's Reception	324
	8.8	David Farmer's Response	325
		_	

		Contents	ix
	8.9	Conrey and Gosh's Example	332
	8.10	End Note	334
9	Gone	ek–Bagchi Universality and Bagchi's Equivalence	337
-	9.1	Introduction	337
	9.2	Notations	340
	9.3	Gonek's Proof Overview	341
	9.4	Gonek's First, Fundamental Lemma	343
	9.5	Technical Lemmas	355
	9.6	Gonek's Second Fundamental Lemma	365
	9.7	Gonek's Universal Property Theorem	373
	9.8	Corollaries to Gonek's Theorem	376
	9.9	Bagchi's Lemma and RH Equivalence Overview	379
	9.10	Bagchi's RH Equivalence	380
	9.11	End Note	386
10	A Se	lection of Undecidable Propositions	388
	10.1	Introduction	388
	10.2	Poonen's List and Other Undecidable Examples	390
	10.3	Semi-Thue Systems	394
	10.4	Tag Systems	396
	10.5	Hilbert's 10th Problem is Undecidable	397
	10.6	Some Undecidable Consequences of DPRM	409
	10.7	Laczkovich's Undecidable Example	412
	10.8	Congruential Functions	416
	10.9	Conway's Unpredictable Iterations	418
11	Equi	valences and Decidability for Riemann's Zeta	424
	11.1	Introduction	424
	11.2	RH and the Arithmetic Hierarchy	426
	11.3	Matiyasevich's Polynomial RH Equivalence	428
	11.4	Matiyasevich's Integer Equivalence	435
	11.5	Ramsey Theory	440
	11.6	The Paris–Harrington and Sine Principles	444
	11.7	Paris–Harrington Theorem Proof	446
	11.8	Bovykin–Weiermann Preliminary Results	455
	11.9	The Bovykin–Weiermann Theorems	461
	11.10	Applications of Recursive Function Theory to RH	463
	11.11	Epilogue	469
App	endix A	Imports for Gonek's Theorems	471
App	endix E	3 Imports for Nicolas' Theorems	490
	B .1	Theorems	490
	B.2	Superior Highly Composite Numbers	494

х	Contents	
Appendix C	Hyperbolic Polynomials	495
C.1	Introduction	495
C.2	Results of Schur, Marlo, and Obrechkoff	497
C.3	Borcea–Branden's and Chasse's Theorems	514
Appendix D	Absolute Continuity	516
Appendix E	Montel's and Hurwitz's Theorems	526
Appendix F	Markov's and Gronwall's Inequalities	530
Appendix G	Characterizing Riemann's Zeta Function	532
Appendix H	Bohr's Theorem	541
Appendix I	Zeta and L-Functions	544
I.1	Introduction	544
I.2	The Selberg Class	545
I.3	Properties of the Selberg Class	546
I.4	Selberg's Conjectures	547
I.5	Consequences of the Selberg Definitions and Conjectures	548
I.6	Selberg Data	549
I.7	Dokchitser L-functions	549
1.8	Iwaniec–Kowalski Class	550
I.9	Consequences of These Conditions	551
1.10	Examples	552
Appendix J	de Reyna's Expansion for the Hardy Contour	553
J.1	Riemann–Siegel Formula	553
J.2	Riemann's Integral for Zeta	554
J.3	Arias De Reyna's Expansion	560
Appendix K	Stirling's Approximation for the Gamma Function	565
K.1	Introduction	565
K.2	Polymath15's Estimate	565
Appendix L	Propositional Calculus \mathscr{P}_0	567
L.1	Introduction	567
L.2	A Brief Account of the Beginnings of Mathematical	
	Logic	567
L.3	Propositional Calculus	570
L.4	The System \mathscr{P}_0	573
Appendix M	I First Order Predicate Calculus \mathscr{P}_1	579
M.1	Introduction	579
M.2	First, Order Mathematical Theories	580
M.3	Examples of First-Order Theories	583
M.4	Models and Truth in an Interpretation	585
M.5	Logical Axioms and Rules of Inference for \mathscr{P}_1	587
M.6	Theorems for \mathscr{P}_1	591

Cambridge University Press & Assessment
978-1-009-38480-3 - Equivalents of the Riemann Hypothesis
Kevin Broughan
Frontmatter
More Information

	Contents	xi
M.7	Decidability in \mathcal{P}_1	596
M.8	Some Mathematical Applications	602
M.9	Models and the Compactness Theorem	606
M.1	0 Gödel's Incompleteness Theorem	608
M.1	1 Arithmetic	614
	M.11.1 Peano Arithmetic PA	614
	M.11.2 Compact Arithmetic CA	616
	M.11.3 Presburger Arithmetic PR	616
	M.11.4 Skolem Arithmetic SK	617
	M.11.5 Robinson Arithmetic Q	618
	M.11.6 Takeuti's Conservative Extension PAT	618
M. 1	2 Arithmetical Hierarchy	624
Appendix .	N Recursive Functions	626
N.1	Introduction	626
N.2	Partial Recursive and Primitive Recursive Functions	627
N.3	Decidable Predicates	630
N.4	Recursively Enumerable Subsets	631
N.5	Enumeration and Rice's Theorem	633
N.6	Algorithms and Machines	636
N.7	Turing Machines	637
N.8	Minsky Machines	641
Appendix	0 Ordinal Numbers and Analysis	649
O.1	Introduction	649
O.2	Ordinal Numbers	649
O.3	Primitive Recursive Arithmetic PRA	652
O.4	Gentzen's Consistency of Arithmetic	654
O.5	The Ordinal Strength of Theories	656
0.6	Paris–Harrington Theorem Proof using Ordinals	656
O.7	End Note	664
Refe	rences	665
Inde	x	677

Preface

Recent developments have provided strong motivation for writing a third and last volume in this series of works. It includes some recent equivalents to the Riemann hypothesis (RH) published in the main during the second decade of this century. Two are arithmetical, one quite analytic, and one very computational. Given the Riemann zeta function is defined using at least Peano arithmetic, and that form of arithmetic is undecidable, there must be a range of undecidabilities waiting to be found within its family of properties. To this end I have concluded the volume with what I hope is a sufficient set of examples and structures of mathematical logic to stimulate research. After more than 160 years of trying without success, this approach could offer some insights at least into why resolving the Riemann hypothesis is such a difficult problem. Even though, as revealed in the penultimate chapter, there are a wide range of undecidable problems in mathematics, the evidence presented in the final chapter is that, as expected, RH is in some sense decidable.

In Volume One there are equivalences for the arithmetical functions $\psi(x)$, $\theta(x)$, $\sigma(n)$, $\pi(x)$ and $\varphi(n)$, but none for the number of divisors function d(n). This omission has now been rectified through the work of Jean-Louis Nicolas. His result on the function d(n) is dependent on another of his equivalences, the inequality $\pi(x) < \text{li}(\theta(x))$. An account of these two closely related equivalences is derived in Chapters 1 and 2. The main chapter and appendix dependencies for Nicolas' results are given in Figure 2.

In Chapter 5 of Volume Two there is an account of work on the de Bruijn– Newman constant Λ , where RH is equivalent to $\Lambda \leq 0$. Csordas et al. had shown there is an explicitly computable $\epsilon > 0$ such that $-\epsilon < \Lambda$, with considerable effort being spent over an extended period of time to reduce the size of ϵ . It came as a nice surprise in 2018 when Brad Rogers and Terence Tao, using methods based on those of Csordas et al., proved that $\Lambda \geq 0$. Thus, RH is equivalent to $\Lambda = 0$. Their proof contains many new ideas and is set out in Chapter 4.

xiv

Preface

The proof, for its ultimate step, requires an upper estimate, in terms of the height, for a positive proportion of the zeta zero height gaps due to Brian Conrey, Amit Gosh, Steve Gonek, Roger Heath-Brown and others. This is derived in Chapter 3. The main dependencies for the result of Rogers and Tao are given in Figure 1.

Soon after the Rogers/Tao work was published on the archive, a much shorter method for obtaining the same result $\Lambda \ge 0$ was found by Alexander Dobner. His method applies not only to the Riemann zeta function but also to the extended Selberg class of L-functions. That this extension is valuable can be seen in the final sections of Chapter 8. "Dobner's contour", Figure 5.3, lies at the heart of his method. This is described for $\zeta(s)$ and outlined for the extended Selberg class in Chapter 5. The Selberg class is described in Appendix I, with the main difference between the class and extended class being the absence in the latter of an Euler product requirement. Siegel's nice proof of Hamburger's theorem, which shows the product is not really needed to characterize the Riemann zeta function is given in Appendix G. It underpins the importance of the extended class.

Figure 1 Dependencies for Chapter 4.

Chapter 7: buried somewhat in two papers from 1913 written in German, one by Jensen and the other by Pólya, is an equivalence of these two authors that might very well have been included in Volume Two. This equivalence

Preface

uses the Laguerre–Pólya class of [30, chapter 5], and will be derived in Chapter 7. It relates to the zeros of polynomials with real coefficients formed by truncating a Taylor expansion of the Riemann $\Xi(s)$ function being all real. This was shown to be true in 2011 by Chasse for all Jensen polynomial degrees up to 2×10^{17} , and his proof is included in Chapter 7. It relies on Platt's value for critical zeta zero heights, and properties of polynomials given by Obrechkoff, Schur, Walsh, Borcea, Brändén and others. These properties are set out in Appendix C.

Following the success of Rogers and Tao in obtaining the equivalence $\Lambda \ge 0$, a Polymath group, Polymath15, was established by Terence Tao with the goal of improving the known upper bound $\Lambda < 0.5$. The results of this work are given in Chapter 6. In a very short period of time, experimenting with more than half a dozen computer languages to obtain acceptable efficiency, the group arrived at an upper bound $\Lambda \le 0.22$. Their work was based on the earlier work on Λ , especially that of de Bruijn set out in [30, section 5.3]. Note that in the notation of Volume Two [30, table 5.2], Polymath15 uses Λ_C for Λ .

Not having the high-powered computational expertise of some of the members of the Polymath group, this author struggled to reproduce their results, but managed to do so using the language Julia. This is in contrast to Polymath who used Pari and C for their final calculations. The Polymath work, as does that of Chasse on Jensen polynomials in Section 7.5, depends on a currently well regarded height due to David Platt, up to which all zeta zeros in the critical strip lie on the critical line. It may well be that further improvements in the Λ upper bound will depend on increases in this height.

However, it just might be possible to use the analytic part of Polymath15's techniques, as they stand, to show that one could shrink the critical strip by some explicit $\epsilon > 0$, or even to demonstrate that such an ϵ must exist. That would be great progress!

The language Julia has many excellent modern features, and could in the future reach a level comparable to LaTeX in terms of value and robustness. It is open source, fast, has a just-in-time compilation step, can employ a wide range of symbols, and has many attached packages. Currently it tends to change rather often – it is quite a new system, so has not been included in the form of a package for Volume Three.

Chapter 8: in addition RH is equivalent to the stronger statement that some associated polynomials, namely all so-called Jensen polynomials related to the Riemann $\Xi(s)$ function, have all real roots for all non-negative shifts of the coefficients. Again it came as a delightful surprise to learn, in 2018 when the second author was in NZ, of the new result of Griffen, Ono, Rolen and Zagier that each Jensen polynomial has all real roots for all shifts sufficiently large

Figure 2 Dependencies for Chapters 2, 5, 6 and 8.

depending on the degree $n \ge N(d)$, with N(d) explicit but not optimal. This was shown in a second paper by a related group of authors. The result depends on estimates and properties of Hermite polynomials, which are derived in the chapter.

However, a survey paper by David Farmer, outlined in Section 8.8, gives a critique of the Griffen et al. work, sets it in a broad context of earlier work, makes a case that their results are more analysis than number theory, and shows why their approach won't be particularly efficient when it comes to checking zeros. Indeed, he gives a heuristic which tends to show that Jensen polynomials are significantly less efficient in finding zeros off the critical line than Taylor polynomials. We neither affirm or attempt to negate this critique, but believe it provides valuable insights into not only the Griffen et al. work, but also new work relating to the de Bruijn–Newman constant reported in Chapter 6, especially the work of Dobner. In this regard the example of Conrey and Gosh based on the extended Lindelöf hypothesis and the extended

Preface

xvii

Selberg class is set out at the end of the chapter. It illustrates the usefulness of going beyond zeta.

Given the difficulties experienced by many mathematicians in attempting to resolve RH over the past 160 years, the question naturally arises whether it might be "undecidable". Readers will be familiar with some undecidable questions or theories, but it seemed helpful to include a chapter showing the broad scope of these examples. This is Chapter 10, which has been built starting with a list of Bjorn Poonen, but includes the Martin Davis proof of the "unsolvability" of Hilbert's 10th problem, undecidabilities which can be derived from this result, and other proofs, to form a basis of ideas on what sort of mathematical questions might be undecidable.

Some of the applications of the negative solution to Hilbert's 10th problem use topological density methods. As far as the Riemann zeta function is concerned, these are analogous to the universality theorems of Voronin. Here I include an exposition of a very general form of universality for $\zeta(s)$ based on the thesis of Steve Gonek, and independently Bhaskar Bagchi. This is in the setting of joint universality for finite families of Dirichlet L-functions, and is given in Chapter 9. That chapter also includes an application to a very nice equivalence of Bagchi which is based on a dynamical systems concept, strong recurrence, although the reader does not require a background in that subject. Bagchi's valuable positive upper density result for translates in zeta's universal property is also given.

Included in this volume are expository information and tools of mathematical logic, set out in four appendices. These are provided to assist readers in exploring the "is RH undecidable or decidable?" issue. Consulting a sample of many of the existing texts on introductory mathematical logic, covering the classical results in the field from mostly the twentieth century, it was hard to pick and choose definitions and results from the sample, since not all authors agreed. For example fundamental to this quest is the definition of "recursive function" so this at least needed to be solid and effective. I chose the texts I found most satisfactory, and included a summary, with some proofs and examples, of some parts of Richard Hodel's book An Introduction to mathematical logic [112], as part of the appendices L on the propositional calculus and M on the predicate calculus. For the appendix on recursive functions N, the material has been based in part on Nigel Cutland's text Computability [66]. The final appendix O gives the reader a taste of proof theory and the opportunity to consider the goal of analyzing and comparing proofs of RH equivalences using some of the tools developed during the twentieth century.

The main chapter in the part of the book which deals with equivalences based on concepts from mathematical logic is Chapter 11. The dependencies are given in Figure 3.

xviii

Preface

We begin in Section 11.2 with the so-called arithmetic hierarchy. This is defined later in Appendix M.12. A variety of RH equivalent statements, which take the form of first-order predicate calculus statements at the base of the hierarchy, are summarized.

Two equivalences of Matiyasevich follow in Sections 11.3 and 11.4. The first shows how a single polynomial in many variables and integer coefficients may be derived, using the equivalence of Shapiro [29, section 10.1], such that RH is equivalent to the polynomial having no integer solution. The second is an RH equivalence which takes the form of an inequality involving arithmetic functions which have only integer values. Then RH is equivalent to the inequality holding for all $n \in \mathbb{N}$. A related computer algorithm halts if and only if RH is false, showing RH is at least semi-decidable.

Next, we embark on a description of some ideas which have been very influential in the derivation of arithmetic/combinatorial statements which are true but cannot be proved in PA, a restricted form of the Peano axioms for arithmetic. This includes the graph theory of König, the examples of Paris and Harrington, and the applications to $\zeta(s)$ of Bovykin and Weiermann set out in part in Sections 11.5, 11.6, 11.8 and 11.9. We include the proof of the Dirichlet–Kronecker density theorem which plays an essential role. The theorem of Paris and Harrington is based on a simple combinatorial statement which is true but cannot be proven in PA. This is used in the theorem of Bovykin and Weiermann to show that for a given $\sigma > 1$ the statement that there are particular *n*-tuples of integers with products *a*, *b* such that the zeta values $\zeta(\sigma + ia)$ and $\zeta(\sigma + ib)$ are close in a particular manner, is true but cannot be proved in PA. There is also a form of the statement for $\frac{1}{2} < \sigma \leq 1$. This shows there are explicit undecidabilities in $\zeta(s)$.

In the final section of Chapter 11 we set out a number of possibly plausible approaches to RH using techniques from mathematical logic. This is set out by way of eight examples, which are really exercises for the reader to refute or elaborate to improve the level of rigour:

(1) An undecidable set of zeta-like functions which includes $\zeta(s)$ defined using Euler products and partial recursive functions, assuming RH is false.

(2) Again assuming RH is false, an undecidable set of partial recursive functions giving the multiplicities of zeta zeros.

(3) A demonstration which shows that if RH is true the zeros without multiplicity are recursively enumerable, as are the zeros with multiplicity.

(4) An analytic model of an arbitrary Collatz function, and thus any Minsky or Turing machine, using one of zeta's universal properties.

(5) Similarly, a model for Conway's rational or vector games using $\zeta(s)$.

(6) Potential use of the method of Richardson/Caviness/Wang to find undecidabilities in zeta. Application of the method of Bovykin and Weiermann.

(7) Again assuming RH is true and that all zeros are simple, we can decide

Figure 3 Some dependencies for Chapter 11.

whether γ is not the imaginary part of a zeta zero using the holomorphic flow of $\xi(s)$.

(8) Using Theorem N.10, which states a set $A \subset \mathbb{N}_0$ is decidable if and only if it is the image of a partial recursive function, which is defined everywhere and strictly increasing, we show that if we assume all zeros on the critical line are simple, then RH is decidable.

I gratefully acknowledge the help and support given to me by the University of Waikato, including Daniel Delbourgo, Tim Stokes, and the forever patient members of the computer support groups. Assistance from the mathematics community was given by Alex Dobner, Steve Gonek, Michael Griffin, Yuri Matiyasevich, Jean-Louis Nicolas, Ken Ono, Brad Rogers, Dinesh Thakur,

XХ

Preface

and Andreas Weiermann. I am also indebted to Richard Hodel and Nigel Cutland and for their beautiful expositions of aspects of mathematical logic which I drew on for material in several appendices. Finally I must acknowledge the very significant use that has been made of the work of Gaisi Takeuti on conservative extensions of Peano arithmetic PA, bridging the gap between the complex functions used in number theory and mathematical logic.

Without the computer systems, Julia, Mathematica, and TikZ, much of the work could not have progressed and been explained as it has been. These are both fine and extensive computer software entities representing the best of the old and new worlds for mathematical computing. Throughout this writing project Cambridge University Press, especially Roger Astley and Clare Dennison, the three copy editors and the Cambridge technical support people, have been enormously encouraging and helpful. Lastly, my solace and support Jackie has never failed to believe I could complete this task with its multiple challenges, even as we both moved into elderhood.