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Nicolas’ Ã(x) < li(¹(x)) Equivalence

1.1 Introduction

To begin this introduction, we give a summary of results for two inequalities

which are closely related to the inequality of Jean-Louis Nicolas, which is the

subject of this chapter. Numerical evaluation up to modest values of x gives

Ã(x) < li(x). It was thought by many in the early part of the twentieth century

that this might always be the case. Given the prime number theorem (PNT)

estimate

Ã(x) = li(x) + O
�

x exp
�

2c
�

log x
��

,

Nicolas’ inequality would have provided a useful simplification. However, in

1914 Littlewood showed, using a method developed by Landau, that li(x) 2
Ã(x) changed sign infinitely often as x ³ > [116, chapter V]. Littlewood’s

research student Skewes set about finding the first number for which li(x) <

Ã(x). In 1933, assuming RH, Skewes showed that such a number would not

be greater than

10101034

.

He continued to work on this problem and by 1955 had shown, uncondition-

ally, that the number would need to be no greater than the astronomical

101010964

.

Many number theorists were fascinated by this problem and progressively

reduced the proved upper bound, or found an interval in which there was

at least one zero crossing for li(x) 2 Ã(x). They included Lehman (1966), te

Riele (1987), Bays and Hudson (2000), Chao and Plymen (2010), Saouter

and Demichel (2014), Zegowitz (2010), and Stoll (2011).

For the initial interval of positivity, J. B. Rosser and L. Schoenfeld (1962)

[206] showed that Ã(x) < li(x) continued to hold at least up until 108. R. Brent

(1975) [24] improved this to 8 × 1010, T. Kotnic (2008) [129] to 1014, D. J.

Platt and T. S. Trudgian (2016) [188] to 1.39× 1017, and J. Büthe (2017) [39]
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2 Nicolas’ Ã(x) < li(¹(x)) Equivalence

to 1019. We note Littlewood’s theorem of 1914 reveals there is an infinite

number of crossings [116, theorem 35]. It takes the form

li(x) 2 Ã(x) = Ω±

� :
x logloglog x

log x

"

.

Michael Rubinstein and Peter Sarnak in 1994 [208] showed that the loga-

rithmic density of positive integers for which li(x) < Ã(x) exists and is about

2.6 × 1027 of all integers.

The difference x 2 ¹(x) has a similar set of behaviours, although not as

extensively studied as li(x) 2 Ã(x). The method of Landau, when applied to

x 2 È(x), because

È(x) = ¹(x) + ¹(x1/2) + O(x1/3+÷),

can be used to show x 2 ¹(x) changes sign infinitely often as x³ >. Indeed,

more precisely [116, theorem 33]

x 2 ¹(x) = Ω±
�

x1/22÷
�

.

Regarding the initial interval, Schoenfeld (1976) showed that ¹(x) < x up

to 1011, Dusart (2010) to 8 × 1011, and Platt and Trudgian in Theorem B.2

(2015) that there is an

x * [ex02h, ex0+h], x0 = 727.951332655, h = 1.3 × 1028,

for which x < ¹(x).

It came as a surprise to the author that the “irregularities of distribution”

([116, chapter V]) exhibited by the three functions Ã(x), li(x) and ¹(x) would

give rise to an RH equivalence. Indeed, that the functions might conspire to-

gether to give an inequality closely related to ¹(x) < x and Ã(x) < li(x), which

was true on an unbounded interval if RH was true, but alternated between true

and false infinitely if RH was false. This result was published by Jean-Louis

Nicolas in 2017 [172] and has the statement

RH ñó Ã(x) < li(¹(x)), x g 11.

The proof is set out in this chapter as Theorem 1.17. Consistent with

Ã(x) < li(x) and ¹(x) < x the proof in the RH is false case, gives not just

one counterexample but an infinite set xn of counterexamples with xn ³ >.

In the RH is true case li(¹(x)) 2 Ã(x) is not only positive but has limit value

infinity. This can be derived from a different equivalence of Nicolas, stated in

an end note to the chapter.

To prove his result Nicolas defines the difference A(x) = li(¹(x))2Ã(x) and

splits it into two parts using the function Π(x). The definitions follow:
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1.1 Introduction 3

Π(x) :=
∑

p j≤x

1

j
=

⌊

log x

log 2

⌋

∑

j=1

π(x1/ j)

j
,

A1(x) := li(ψ(x)) − Π(x),

A2(x) := li(θ(x)) − li(ψ(x)) + Π(x) − π(x),

A(x) := li(θ(x)) − π(x) = A1(x) + A2(x).

The intricate detailed relationships between the lemmas required to prove

the theorem are described in Figure 1.1. Note the important role played by

the imported results set out in Appendix B.

L1.1

L1.7

L1.2 L1.6

L1.8

L1.4

B.2

L1.9

L1.13

L1.11L1.14

T1.16

T1.17

L1.10

L1.15

L1.3

B.1 B.3

L1.5

L1.12

Figure 1.1 Dependencies for Theorem 1.17.

We don’t develop the fascinating consequences of Nicolas’ theorem, such

as if we assume RH is true we get

θ(x) < x =⇒=⇒ π(x) < li(x).

Because of this, the first crossing point for x and θ(x), under RH, must come

before that of π(x) and li(x), and the reverse is true for the second one. Any

density which exists for π(x) − li(x) must be no greater than that for θ(x) − x.

In Section 1.2 we estimate li(x), in Section 1.3 the function A1(x), in Sec-
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4 Nicolas’ Ã(x) < li(¹(x)) Equivalence

tion 1.4 A2(x), and in Section 1.5 the function A(x), all assuming RH is true.

Where it is needed, we use the equivalence of Schoenfeld given in Volume

One and quoted in this volume in Appendix B. Then for the case RH is false

we first prove part of Guy Robin’s result, Theorem 1.16 which is

A(x) = Ω2(x³), 0 < ³ < Θ,

where Θ := sup{´ : ·(´ + iµ) = 0} > 1
2
, which is all we need. This is then

used to easily complete the proof of the equivalence, which is a little weaker

than the result of Nicolas.

1.2 Estimating the Logarithmic Integral

First, we define the logarithmic integral valid for all x > 1 using the Cauchy

principal value:

li(x) := lim
÷³0+

� 12÷

0

dt

log t
+

� x

1+÷

dt

log t
,

so

li(x) := li(2) +

� x

2

dt

log t
,

with li(2) = 1.045163780117....

For x³ > we have the asymptotic expansions for the logarithmic integral

valid for all N * N:

li(x) =

N
�

j=1

( j 2 1)!x

(log x) j
+ O

�

x

(log x)N+1

"

=
x

log x
+ O

�

x

(log x)2

"

=
x

log x
+

x

(log x)2
+ O

�

x

(log x)3

"

.

To see this note that by splitting the integral at
:

x we get for n * N
� x

0

1

(log x)n
dx = O

�

x

(log x)n

"

.

The expansion follows using integration by parts. In Figure 1.2 we show

li(x) around its singularity, and in Figure 1.3 we give li(x) and its asymptotic

approximation

x

log x
+

x

(log x)2
+

2x

(log x)3
,
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Figure 1.2 A plot of li(x) for 0 ≤ x ≤ 8.
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Figure 1.3 A plot of li(x) and an approximation for 2 ≤ x ≤ 200.

which for at least x ≥ 20 is less than li(x).

We note that the finite sum approximations are increasing with the number

of terms and all terms, even the error for x sufficiently large, are positive for

x ≥ 2.

We use in the sequel the following functions relating to the difference be-fference

tween li(x) and its asymptotic expansions. We need only go to the second

order:

L1(x) := li(x) −
x

log x
,

x

x

x

x
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6 Nicolas’ Ã(x) < li(¹(x)) Equivalence

L2(x) := li(x) 2 x

log x
2 x

(log x)2
,

F1(x) :=
(log x)2 li(x) 2 x(log x)

x
= L1(x)

(log x)2

x
,

F2(x) :=
(log x)3 li(x) 2 x(log x)2 2 x(log x)

x
= L2(x)

(log x)3

x
.

With these definitions we will see that F1(x) and F2(x) are bounded and have

well-defined asymptotic limits.

Lemma 1.1 The function F1(x) has the following and no other zeros or

critical points on [1,>):

(i) limx³1+ F1(x) = 0.

(ii) An absolute minimum at x3 = 1.85... with value 20.488.

(iii) A positive zero at x0 = 3.8464....

(iv) An absolute maximum at x4 = 94.6... with value 1.784....

(v) limx³> F1(x) = 1.

In addition

(vi) For all x > 1 we have li(x) < 3x/4.

Proof (1) First, note that for x > 1 we have the Taylor expansion

li(x) = loglog x + µ0 +

>
�

n=1

(log x)n

n · n!
.

Since the sum is O((x 2 1)ex21), we can write as x ³ 1+, li(x) = loglog x +

µ0 + o(1). Thus, using l’Hôspital’s rule to derive

lim
x³1+

(log x) loglog x = lim
y³0+

y log y = lim
y³0+

log y

1/y
= 2 lim

y³0+
y = 0,

we get

lim
x³1+

F1(x) =
1

x

�

(log x)2(loglog x + µ0 + o(1)) 2 x log x
�

= lim
x³1+

(log x)

x
(log x) loglog x = 0.

This proves (i).

(2) We now define three related functions which will enable the properties of

F1(x) to be deduced:

f1(x) :=
x2

log x
F21(x),
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www.cambridge.org


Cambridge University Press & Assessment
978-1-009-38480-3 — Equivalents of the Riemann Hypothesis
Kevin Broughan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Estimating the Logarithmic Integral 7

= 2 li(x) + x 2 x

log x
2 log(x) li(x),

f2(x) := x f 21(x),

= 2
�

li(x) 2 x

log x
2 x

(log x)2

"

= 2L2(x) = 2F2(x)
x

(log x)3
,

f3(x) := f 22(x) = 2 2

(log x)3
.

Figures 1.4 and 1.5 indicate how the first two functions behave.

20 40 60 80 100
x
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4

f1(x)

Figure 1.4 A plot of f1(x) for 2 f x f 100.

Note that since x > 1, f2(x) and f 2
1
(x) have the same sign, and that f3(x),

hence f 2
2
(x), is strictly negative. Thus, f2(x) is decreasing. Also the limit of

f2(x) at 1+ is +> and at> is 2>. Therefore f2(x) has a unique zero in (1,>)

which we compute as x2 = 10.3973.... See Figure 1.5.

(3) We also derive

lim
x³>

F1(x) = lim
x³>

(log x)2
�

x
(log x)

+
x

(log x)2 + O

�

x
(log x)3

��

2 x(log x)

x

= lim
x³>

x + O(x/(log x))

x
= 1.

This proves (v).
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Figure 1.5 A plot of f2(x) for 1 f x f 20.

(4) A computation shows f1(x) has precisely two zeros on (1,>), at x3 =

1.85... and x4 = 94.6.... Hence F1(x) has two corresponding critical points.

Thus, we can say, moving from left to right, F1(1) = 0, then F1(x) de-

creases to its minimum F1(x3), then increases to its maximum F1(x4), passing

through a zero which we compute as x0 = 3.846467717..., and then descends

to its asymptotic limit 1 at>. Thus, we have (ii) and (iv). See Figures 1.6 and

1.7.

(5) Because

d

dx

�

li(x)

x

"

= 2 F1(x)

x(log x)2

is positive for 1 < x < x0 and negative for x0 < x, li(x)/x has a maximum at

x0, and so we can write for all x > 1

li(x)

x
f li(x0)

x0

f 0.743 <
3

4
,

so li(x) < 3x/4. This proves (vi).

(6) In addition note that in the range x > x3 we have F1(x) > 1 so

li(x) 2 x

log x
= L1(x) = F1(x)

x

(log x)2
>

x

(log x)2

and so

li(x) >
x

log x
+

x

(log x)2
, x > x3.

¥
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Figure 1.6 A plot of F1(x) for 1 f x f 11.
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Figure 1.7 A plot of F1(x) for 11 f x f 1000.

The function F2(x) behaves, qualitatively, in the same manner as F1(x).

This gives rise to the possible use of higher-order approximations, Fn(x), if

needed.
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10 Nicolas’ Ã(x) < li(¹(x)) Equivalence

Lemma 1.2 The function F2(x) has the following and no other zeros or

critical points:

(i) limx³1+ F2(x) = 0.

(ii) An absolute minimum at x3 = 3.38... with value 21.369496....

(iii) A positive zero at x0 = 10.39....

(iv) An absolute maximum at x4 = 380.15... with value 4.040415....

(v) limx³> F2(x) = 2.

Proof The proof is similar to that of Lemma 1.1. In this case we define

f1(x) :=
x2F2

2
(x)

(log x)2
,

f2(x) := x f 21(x),

f3(x) := f 22(x) = 2 6

(log x)4
< 0,

and proceed using the same steps as in that lemma. The function F2(x) is

plotted in Figures 1.8 and 1.9. ¥
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Figure 1.8 A plot of F2(x) for 1 f x f 20.
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